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Abstract—In this paper we study the effect of use of jacobian
in different linear transformation (LT) based methods of VTLN.
In conventional VTLN, the jacobian is highly non-linear and can
not be computed and hence is ignored. In the LT based VTLN,
since VTLN scaling is expressed as a matrix multiplication of
un-warped MFCC features, jacobian is simply turns out as
the determinant of the VTLN warp matrices. Hence in this
framework of VTLN it is possible to account for jacobian. Two
different methods, namely, L-VTLN and T-VTLN, are used for
implementing LT based VTLN. By conducting experiments on
the RM task and the TIDIGITs databases in matched and mis-
matched speaker conditions, the performance of using jacobian in
warp-factor estimation have been evaluated. It is observed that
in almost every matched and mis-matched speaker conditions
jacobian improves performance in L-VTLN framework. In T-
VTLN, however, jacobian does not improve the performance
in any mis-matched speaker conditions. The cases in which
jacobian degrades performance in L-VTLN and T-VTLN have
been studied in detail.

I. INTRODUCTION

One of the major reasons for the inferior performance
of Speaker Independent (SI) Automatic Speech Recognition
(ASR) as compared to the Speaker Dependent (SD) ASR
is the differences in the Vocal Tract Length (VTL) among
speakers. Due to this variations in the VTL, the spectra
of the same sound when spoken by different speakers vary
considerably and hence the MFCC acoustic features that are
extracted from the speech spectrum also vary considerably
between speakers. Since, the SI model is trained using the
speech utterances collected over many speakers, it captures
the spectral variations of the speakers in the training set. As
a result, the SI acoustic model do not exactly match the
speech characteristics of the test speakers. This causes the
performance of SI systems to fall below that of SD systems.

To improve the performance of SI systems and to make
it approach to that of the SD models, methods of speaker
normalization are used. One of the methods for speaker
normalization is called Vocal Tract Length Normalization
(VTLN). VTLN tries to reduce the variation in the spectra
due to differences in the VTL between speaker by scaling
the frequency axis of the spectrum (section II for details).
In MFCC processing [1], VTLN is usually implemented by
scaling the frequency axis (or, equivalently, scaling the filter-
bank in MFCC processing) of the speech spectrum to produce
the VTLN warped features. For every utterance the frequency

warp-factor is estimated such that the variations in spectrum
in the speech utterance is reduced. Since there is no reference
speaker to which the spectra of the speech utterance can be
matched, usually Maximum Likelihood (ML) is used to obtain
the warp-factor, i.e.,

α∗ = arg max
α

{
log p(Xα|λ,U) + log

∣∣∣∣dXα

dX

∣∣∣∣} (1)

where, λ, U and
∣∣dXα
dX

∣∣ are the acoustic model parameter,
the transcription and the Jacobian, respectively. Also, in Eq.1,
X represents the un-warped (No-VTLN MFCC features) and
the corresponding MFCC features obtained after warping the
spectrum by α is denoted by Xα.

Due to the filter-bank scaling operation to generate warped
features, Xα, the relation between warped and un-warped
features is highly non-linear. Hence Jacobian,

∣∣dXα
dX

∣∣, is not
easy to compute analytically and in practice only the likelihood
of the warped features w.r.t. the model, p(Xα|λ,U), is used
for warp-factor estimation after ignoring the jacobian (section
II for details).

However, the jacobian is a very important term for warp-
factor estimation and should not be ignored. In our recently
proposed linear transformation (LT) based VTLN, VTLN
warping is expressed as a matrix multiplication of un-warped
features. Hence in this framework, the jacobian simply turns
out as the determinant of the warp matrices and thus gives a
framework to compensate jacobian in warp-factor estimation.
It has been observed that the jacobian is not a constant term,
and hence it should be accounted for.

In this paper, the effect of use of jacobian on Word Recog-
nition Accuracy (WRA) has been evaluated by conducting
experiments on different train and test speaker condition on
the RM and TIDIGITs task databases. We have used two LT
based methods for VTLN, namely L-VTLN and T-VTLN, and
have used the jacobian for warp-factor estimation.

In Section II we discuss VTLN as it is done in conventional
approach and describe why jacobian is ignored. In Section III,
the two approaches for LT implementation of VTLN (L-VTLN
and T-VTLN) are discussed. We have also shown how to ob-
tain the jacobian in these methods. Then in Section IV and V,
we describe our experimental set up on the RM and TIDIGITs
task databases and present our results on compensation of



jacobian for warp-factor estimation on different train and test
speaker conditions.

II. VOCAL TRACT LENGTH NORMALIZATION (VTLN)

In this section, we describe VTLN for speaker normalization
in more detail. Fig.1 shows the effect of variation of vocal tract
length on the spectra of a sound when spoken two different
speakers. The spectrum shown in solid line is the sound /aa/
spoken by a male speaker and the spectrum shown in dotted
line is the same sound when spoken by a female speaker.
Clearly, there is significant difference in the two spectra.
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Fig. 1. Spectra of the sound /aa/ when spoken by a male speaker and a
female speaker showing variation in the formant frequencies

VTLN tries to reduce this variation in the spectra by warping
the spectrum of one speaker so that it approximately matches
the other. The frequency-scaling operation in VTLN can be
represented as as follows.

f̃ = gα(f) (2)

where gα(f) denotes the frequency-warping applied to the
speech spectrum and α is the warping parameter. According
to uniform acoustic tube model, the VTLN warping function
is usually assumed to be a linear function, i.e.,

SA(f) = SB(αABf) (3)

In Eq. 3, A and B represent two hypothetical speakers and
SA(f) and SB(f) their spectrum. Since there is no universal
speaker to which the spectra of all speakers can be matched,
the VTLN warp-factor, α, is estimated from data in Maximum
Likelihood sense. The distribution function of the VTLN
warped features can be expressed as,

p(X|λα) = p(Xα|λ,U)
∣∣∣∣dXα

dX

∣∣∣∣ (4)

where, λα, λ, U and
∣∣dXα
dX

∣∣ are the VTLN normalized model,
SI (or previous iteration VTLN) model, the transcription and
the Jacobian, respectively. Jacobian comes into picture due to
VTLN normalization of the MFCC features. The ML estimate
of warp-factor is given by Eq. 1.

In conventional VTLN [1], the frequency-warped MFCC
features, Xα, are generated by a filter-bank scaling operation
and the maximization over α is done by performing a search

over α from 0.8 to 1.20 at the step size of 0.02. Since filter-
bank scaling is highly non-linear, Jacobian can not be analyti-
cally computed, hence it is ignored in practice. Expression for
warp-factor estimation after ignoring jacobian is given by

α∗ = arg max
α

log p(Xα|λ,U) (5)

Next we discuss the LT based methods for VTLN that
allows jacobian to be easily computed.

III. LINEAR TRANSFORMATION APPROACH FOR VTLN
Recently we have shown that conventional VTLN warping

can be expressed as a linear transformation of the un-warped
features in several ways. In these methods, the frequency
scaling (or, filter-bank scaling operation as in conventional
VTLN), can be expressed as a matrix multiplication, i.e.,

Xα = gα(X) ≈WαX, (6)

Following advantages are obtained in LT of VTLN over
conventional VTLN:

1) It is not necessary to generate and store the warped
features for each values of warp-factor. A VTLN warp-
matrix is analytically computed (or estimated from data)
for each values of warp-factor. Warped features for a
particular value of warp-factor can be generated by
linearly transforming the un-warped MFCC features by
the VTLN warp matrix corresponding to the warp-factor.

2) Since warping is expressed as linear-transformation, Ja-
cobian can now simply be calculated as the determinant
of the VTLN warp-matrix, i.e.,

∣∣dXα
dX

∣∣ = |Wα|
In Linear Transform VTLN frame-work, jacobian can be

accounted for in warp-factor estimation, i.e.,

α∗ = arg max
α

log p(WαX|λ,U) + log(|Wα|) (7)

Now, we describe two different methods for implementing
linear transformation VTLN that we have used in the experi-
ments in the paper.

A. Linear VTLN (L-VTLN)

In [2] a method have been proposed to obtain VTLN-
warped features, Xα, through a linear transformation of un-
warped MFCC features, X . In this method the VTLN matrices
are estimated from the training data. The following steps are
followed to estimate the matrices:

1) Start with the Non-VTLN model λ0.
2) The training set is warped in conventional frame-work

of VTLN warping with warp-factor α to produce the
warped-training set {Xα}R1 . R is the number of training
utterances.

3) Estimate the (as in CMLLR [3]) transformation, Aα,
between the model λk and the training set {Xα}R1 , i.e.,

Aα = arg max
A

p({Xα}R1 |A, λk) (8)

where, the matrix, A, transforms both the means and the
co-variances as follows,

µ̂k = A µk , Σ̂k = A Σk AT (9)
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(a) L-VTLN (shown for Male Train
set of TIDIGITs database)
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Fig. 2. Jacobian of L-VTLN and T-VTLN Warp-matrices

4) Compute the L-VTLN warp-matrix for warp-factor 1/α
as Wα = (Aα)−1.

5) Do warp-factor estimation of the training data following
Eq. 7.

6) Train VTLN normalized model, λk+1, using the warped
training utterances.

In L-VTLN, the VTLN warp-matrices, Wα, are estimated
from the training set and the jacobian is simply computed
as |Wα|.

B. Band-limited Interpolation based VTLN (T-VTLN)

In T-VTLN [4], the VTLN warp-matrices are analytically
computed, as oppose to being estimated from training data as
in the case of L-VTLN. The VTLN warp-matrices, Wα, are
obtained using the idea of band-limited interpolation, which
is given by

Wα = DTαD−1 (10)

where D is the DCT transform and Tα is the band-limited
interpolation matrix, represented by

Tαk,n =
1

2N

2N−1∑
l=0

e
−j 2π

2N

(
ν̃l
νs

)
k
ej

2π
2N ( νlνs )n. (11)

where νl and ν̃l denote the Mel-frequencies corresponding
to the physical-frequencies (Hz) before and after frequency
scaling, νs is the sampling frequency expressed in Mels and
N is the number of Mel filters. In this method, the Linear
Transformation is exactly computed without any modification
in standard MFCC processing.

In T-VTLN, the VTLN warp-matrices, Wα, are analytically
computed using Eq. 10 and the jacobian is calculated as |Wα|.

In both L-VTLN and T-VTLN methods of VTLN, warp-
factor estimation is done by performing a search over α as
mentioned in Eq 7. However, it can be done very efficiently
in Expectation-Maximization framework [5]. Other advantages
of using LT based VTLN can be found in [6], [7].

In Fig. 2(a) and Fig. 2(b) the jacobian for the L-VTLN
(estimated using the male training of TIDIGITs database) and
T-VTLN warp-matrices (analytically calculated) are shown,
respectively. From the plots of the Jacobian, it is clear that
jacobian is an important term for warp-factor estimation and
it should not be ignored [8].

IV. RESULTS AND DISCUSSIONS

We now present the experimental results on the DARPA
Resource Management (RM) and the TIDIGITs databases.

In the case of RM, cross-word tri-phone models were used
with decision tree based state tying. The tri-phone HMM
models consists of three states, with each state being modeled
by 6 diagonal-covariance Gaussian mixture model. A three
state model with 6 diagonal-covariance components was used
for silence (“sil”), and a single state short-pause (“sp”) model
was constructed by tying the state to the center state of
the silence model. Training was done using the RM SI-109
training set (for Adult train) that resulted in 1560 states after
state tying. For training using Male (or Female), the model was
built using the male (or female) part of the RM SI-109 training
set. Test was performed on the Feb-89 test set (for Adult test)
using RM word pair language model. For test using male (or
female), the male (or female) part of the Feb-89 test set was
used. In case of the TIDIGITS, 11 digits models with 16 states
and 5 diagonal covariance components were used. “sil” and
“sp” models were similar to RM.

The features in all tasks are 39-dimensional MFCC, com-
prising normalized log-energy, c1, . . . , c12 and their first and
second order derivatives. 20 ms frames with 10 ms overlap
was used and cepstral mean subtraction was applied on every
utterance. All experiments were conducted using HTK.

V. EXPERIMENTAL RESULTS AND DISCUSSIONS

In this section we present our results of experiments con-
ducted on the RM and the TIDIGITs task databases using
L-VTLN and T-VTLN methods and discuss the effect of
accounting for jacobian for warp-factor estimation. All VTLN
experiments were performed in un-supervised mode, i.e., using
the first-pass transcription to compute the likelihood of warped
test utterances for warp-factor estimation (unless otherwise
mentioned).

A. Experiments using L-VTLN

Different experiments were conducted by taking differ-
ent train and test speaker conditions using L-VTLN (sec-
tion III-A). The word recognition accuracy (WRA) are shown
in Table I and II for the experiments on RM and TIDIGITs
tasks, respectively. In the tables, for example, the experiment
M-F were conducted by taking the Male training data to build
the acoustic model and tested on Female test data. Similarly,
the case A-A denotes Adult Train and Adult test. The results
on both the databases are broken into matched and mis-
matched train and test speaker conditions. In all cases shown in
the table, the L-VTLN matrices were trained using the training
data by following the steps described in section III-A.

Analysis of Results on RM Task:
From the experimental results on RM task shown in Table I
the following observation are made:
• There is marginal improvement in the matched speaker

case of A-A when jacobian was used in warp-factor
estimation.



TABLE I
Word Recognition Accuracy (WRA) on RM Tasks for Matched and

Mis-matched Train-Test Speaker conditions using L-VTLN

RM Task
Matched Mis-matched

Method A-A M-F F-M
No VTLN 96.49 83.43 76.73

L-VTLN (No-Jacob ) 97.19 92.82 80.69
L-VTLN (Jacob) 97.23 94.16 83.19

A-A=Adult train - Adult test, M-F= Male train - Female test, F-M=Female
train - Male test

TABLE II
Word Recognition Accuracy (WRA) on TIDIGITs Tasks for Matched and

Mis-matched Train-Test Speaker conditions using L-VTLN

TIDIGITs Task
Matched Mis-matched

Method A-A M-C C-M M-F F-M
No VTLN 96.70 68.39 89.12 94.11 94.92

L-VTLN (No-Jacob ) 99.64 92.88 94.97 99.36 98.35
L-VTLN (Jacob) 99.62 92.01 96.00 99.20 98.68

A-A=Adult train - Adult test, M-F= Male train - Female test, F-M=Female
train - Male test M-C=Male train - Child test, C-M=Child train - Male test

• The performance improvement in the cases of M-F and
F-M was significantly high when jacobian was used.

Analysis of Results on TIDIGITs Task:
From the experiments on TIDIGITs task shown in Table II,
the following observations are made:
• For the matched case on A-A (Adult Train and Adult

Test), use of Jacobian had no effect on the word accuracy.
• There were significant performance improvement in the

case of C-M and slight improvement in the case F-M
when jacobian was used.

• However there were slight degradation in WRA in the
cases of M-C and M-F.

Analysis of Results on A-A:
To understand the reason for jacobian not improving the WRA
in the A-A case of TIDIGITs we plotted the log likelihood
(without jacobian), log p(Xα|λ), for some of the warped test
utterances, as a function of warp-factor, α, which are shown in
Figure 3. For ease of comparison, the log likelihood scores are
normalized so that the maximum is at 0. The (log) jacobian
obtained from the L-VTLN matrices, log |Wα|, are also shown
in the figure after normalization so that the maximum is 0.

From Figure 3(a) we can observe that the variation in
likelihood as a function of warp-factor, α, is significantly
higher than the variation in jacobian over the entire range of
α. Figure 3(b) shows a magnified view of Figure 3(a) shown
over the part of the search range of warp-factor where the
ML estimate of α is expected to lie. Since the variation of
likelihood is very high compared to the variation of jacobian,
use of jacobian has no effect and warp-factor estimation is
effectively driven by likelihood alone. Therefore, in the A-
A case, the WRA when jacobian was used for warp-factor
estimation and jacobian not being used were almost identical.

Analysis of Results on M-C and M-F:
In the case of M-C and M-F, there was a degradation in WRA
with the use of jacobian. Again, to understand the reason for

0.8 0.9 1 1.1 1.2

−6

−4

−2

0

α

lo
g

 p
(X

α
|λ

) 
a

n
d

 lo
g

 |
W

α
|

(a) Likelihood vs. Jacobian for A-A
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(b) Magnified View of Fig. 3(a)

Fig. 3. Likelihood (of selected Test utterances) vs. Jacobian of L-VTLN
Warp-matrices for Adult Train and Adult Test on TIDIGITs task
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(a) First-pass Transcription used for
likelihood calculation
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Fig. 4. Likelihood vs. Jacobian of L-VTLN for M-C when First-pass
transcription and True transcription were used during warp-factor estimation
of several test utterances in TIDIGITs task

this degradation, the likelihood of warped test utterances and
jacobian are shown against warp-factor for M-C in Figure 4.

From Figure 4(a), it can be observed that, unlike the
case of A-A, the variation in likelihood is less compared
to the variation in jacobian. This is due to the poor first-
pass transcription (only 68.39%) that is used for alignment
of the test data for warp-factor estimation. Since there are
many errors in the first-pass transcription, likelihood of the
(children) test data is not computed accurately w.r.t. the (male)
model. As a result, the variation in likelihood of the warped
test utterances is not large for different values of warp-factor.
From the figure it is also observed that the likelihood of the test
utterances are dominated by the jacobian function, particularly
in the range of α where the ML estimate is expected to lie, and
therefore the warp-factor selection is significantly affected by
the jacobian causing incorrect estimate of α. This has caused
the inferior performance of M-C when jacobian was used.

Effect of use of True Transcription for warp-factor estima-
tion during test in M-C and M-F:
To further check that it is the poor first-pass transcription that
is responsible for incorrect estimation of warp-factor, we used
the true transcription of the test utterances for warp-factor
estimation. The likelihood plots are shown in Figure 4(b) for
M-C. The use of true transcription in warp-factor estimation
leads to better alignment of the test utterance and hence better
computation of likelihood. As it is evident from the figure,
the variation in the likelihood increased compared to when
first-pass transcription was used.

A degradation in performance in the case of M-F was also
observed with the use of jacobian in warp-factor estimation.
The WRA for M-C and M-F using true transcription for α
estimation are shown in Table III. Now, in both the cases, the



TABLE III
WRA when True Transcription was used for warp-factor estimation for the

cases where Jacobian degrades performance in TIDIGITs

Mis-matched
Method M-C M-F

L-VTLN (No-Jacob) 93.30 99.41
L-VTLN (Jacob) 93.26 99.38

performance with jacobian increased and became very similar
to not using jacobian for warp-factor estimation.

B. Experiments using T-VTLN

In Table IV, the experimental results on RM and TIDIGITs
Task conducted using T-VTLN (section III-B) are presented.
• In RM task, for the matched case of A-A, use of Jacobian

had no effect on the word accuracy.
• There were performance degradation in the case of M-F

with the use of jacobian.
• Similarly in TIDIGITs task, jacobian marginally im-

proved the performance in case of A-A.
• There was degradation in WRA in the case of M-C.

TABLE IV
Word Recognition Accuracy (WRA) on RM and TIDIGITs Tasks for Matched

and Mis-matched Train-Test Speaker conditions using T-VTLN

RM task TIDIGITs Task
Matched Mis- Matched Mis-

Matched matched
A-A M-F A-A M-C

No VTLN 96.49 83.43 96.70 68.39
T-VTLN (No-Jacob) 97.07 96.65 99.54 96.64

T-VTLN (Jacob) 97.07 96.07 99.58 87.64

Analysis of Results on M-C case of TIDIGITs:
Figure 5(a) and Figure 5(b) shows the likelihood of the test
utterances for M-C case of TIDIGITs (same set of utterances
as used in Figure 4) obtained using the T-VTLN matrices when
first-pass transcription and true transcriptions were used for
warp-factor estimation, respectively. The jacobian of the T-
VTLN matrices are also shown in the figures. From the figure
we observe that, due to errors in first-pass transcription, the
variation in likelihood of the warped utterances for different
values of warp-factor are not very high. As a result, jacobian
dominates likelihood and again the effect of likelihood is
almost ignored in warp-factor estimation. This caused the
degradation in WRA when jacobian is used. Even when the
true transcription was used for computation of likelihood of
the warped utterances (Figure 5(b)), jacobian had a dominating
contribution to warp-factor estimation, causing incorrect α
estimation, and hence resulting in inferior performance with
jacobian.

VI. CONCLUSIONS

In this paper we have studied the effect of use of jacobian in
linear transformation based methods of VTLN. By conducting
experiments on the RM task and TIDIGITs databases, we
observed that when jacobian is used in L-VTLN, the per-
formance improves in all cases of matched and mis-matched
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likelihood calculation
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Fig. 5. Likelihood vs. Jacobian of T-VTLN for M-C when First-pass
transcription and True transcription were used during warp-factor estimation
of several test utterances in TIDIGITs task

speaker conditions of RM task. In TIDIGITs, in L-VTLN
cases, use of jacobian improves WRA compared in the cases
of F-M and C-M. However, in the cases of M-C and M-F,
the degradation in word accuracy is due to errors in first-pass
transcription that causes incorrect calculation of likelihood.
When true transcription was used for warp-factor estimation
in these two cases, WRA performances of using jacobian were
similar to that of only likelihood based warp-factor estimation.
In T-VTLN based method, on the other hand, in the matched
speaker conditions of TIDIGITs and RM task databases (A-A)
the performance of use of jacobian was almost similar to only
likelihood based warp-factor estimation. In mis-matched cases,
however, there was degradation in WRA. We believe that the
degradation in performance in T-VTLN with jacobian is due
to improper calculations of likelihood, for which jacobian is
having dominating contribution to warp-factor estimation. We
are looking into this issue in more detail.
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