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Abstract—In this paper, we present a shift based speaker
normalisation procedure, where the shift is estimated using
spectral centre of gravity(CG) method in each frame instead
of conventional ML based methods. The idea is based on the
observation that the CG values of two shifted signals also differ by
the same shift. The main advantage of this method is that the shift
can be estimated in a single step during feature extraction making
it computationally efficient as compared to the ML methods.
We compare the performance of the proposed method with the
conventional ML based VTLN on a phoneme recognition task.

I. INTRODUCTION

Inter speaker variability is a major source of performance

degradation in Automatic Speech Recognition(ASR). This

variability can be due to various factors such as speakers:

age, gender, speaking style, accent and emotion. Of all these,

speakers age and gender add to most of the speaker variability,

which in turn are related to the vocal-tract length of the

speakers. Accounting for this variability can improve the per-

formance of the recognition system drastically and is known

in literature as vocal tract length normalisation (VTLN)[2]. In

VTLN, speaker normalisation is brought about by scaling the

spectra of speakers enunciating the same sound and most often

the scaling relation is assumed to be linear. It is given as:

SA(f) = SB(αAB f) (1)

where αAB is the linear scaling or warping factor relating

the spectral envelope of the speaker A and B enunciating

similar utterances. The above model is also called linear-

scaling model [1]. In practical ASR systems, as we have access

only to the acoustic data and do not have any idea of the

speaker’s vocal tract length, we do a maximum likelihood

based grid search to find the optimal scaling factor α and

is given as:

α̂i = argmax
α

Pr(Xα
i |λ, Wi) (2)

where αi represents scaling factor of the ith utterance Xi,

given the HMM model λ and the transcription Wi for that

utterance. This a computationally expensive procedure as the

features have to be computed for all values of α before finding

the optimal scaling factor for a particular speech utterance. If

we can eliminate the need for a grid-based approach, we will

gain significantly in the computation during the estimation of

optimal scale factor α.

For the model in Eq.1, Umesh.et.al[3] suggested that on

universally log-warping the spectra of speakers, the scale

factor would appear as a translation factor in log-warped

domain as:

sa(λ) = SA(f = eλ) = SB(αAB eλ)

= SB(eλ+ln αAB ) = sb(λ + lnαAB) (3)

where sa(λ) and sb(λ) represent the spectra of speaker A
and B respectively in the log-warped domain. Here the nor-

malisation is brought about by estimating a frequency shift

factor instead of a frequency scale factor. If we can estimate

the shift in a single step rather than following a maximum

likelihood based grid search, we can have a significant gain in

computation. With this motivation, in this paper we present a

novel shift based speaker normalisation[4] method ,where the

shift is estimated using spectral centre of gravity rather than

using maximum likelihood based grid search.

The paper is organised as follows: First we give a brief

introduction to centre of gravity and the discuss how it could

be used for speaker normalisation, followed by results and

discussion.

II. CENTRE OF GRAVITY

A. Definition

The classical definition of CG (η) of a continuous function

f(t), is defined as:

η =

∫
∞

−∞

t ∗ f(t) dt

∫
∞

−∞

f(t) dt

(4)

Alternatively CG can be calculated in frequency domain as

shown by Stylianou [5].

η = −φ
′

(0) (5)

= −φ(1) (6)

where φ(ω) is the phase spectrum of f(t). This means that

the CG of a real signal f(t) is only a function of the first

derivative of the phase spectrum at the origin.

B. Finding delay using CG

Consider two signals, f1(t) = δ(t) and f2(t) = δ(t − to)
which differ only by a delay to. Their corresponding Fourier

transforms are given as:

δ(t)
F
←→ 1

δ(t− to)
F
←→ e−jωto



CG calculated using Eq.6

η1 = −φ1(1) = 0

η2 = −φ2(1) = to

Therefore, η2 − η1 = to

So, if the two signals differ by a delay of to, their CGs also

differ by to. Hence CG can be used to estimate the delay

between signals differing by a shift. In the next section we

propose our novel shift based approach for speaker normali-

sation, where the shift is estimated from the spectral CG’s of

speakers enunciating similar utterances.

III. PROPOSED METHOD

Consider the spectra of a particular phone enunciated by dif-

ferent speakers. According to Eq.1, the spectra of the speaker

will be related by a linear scaling relation and according

to Eq.3, they appear as shifted versions in the log-warped

frequency domain. Since we are interested in finding the shift

factor, we will talking only about the log-warped spectra.

Let the shifted versions of the spectra of the speakers be

represented as: sph(λ), sph(λ−τ1), sph(λ+τ2) and so on. By

taking IDFT, the shift factor appears only in the phase cepstra

and is given as:

sph(λ− τi)
IDFT
⇐⇒ Dph(c)ejτic

= |Dph(c)|ejφph(c)ejτic ∀i (7)

where |Dph(c)| is the magnitude and φph(c) is the phase of

the phone cepstra respectively. τi is the shift factor, which can

be either positive or negative. From Eq.6 the CG of speaker

spectra for the phase cepstrum is given as:

CGi
ph = φph(1) + τi ∀i (8)

Since we are interested only in shift τi, the phone phase factor

φph has to be eliminated. From Eq.7, we can notice that the

phone phase factor φph will be same for all the speakers

uttering the same phone. If we can find a reference speaker

for the entire population, the shift factor can be estimated with

respect to the reference speaker. But in practice, as we do not

have a reference or a golden speaker, we use average CG

calculated over all speakers as the reference for a particular

phone. This is given as:

CGref
ph =

ΣN
i=1CGi

ph

N
(9)

= φph(1) +
ΣN

i=1τi

N
(10)

= φph(1) + τavg (11)

where CGref
ph is the reference CG for a particular phone and

N the total number of speakers.

The shift for any spectra is now calculated as the difference

of reference CG with its respective CG.

shiftiph = CGavg
ph − CGi

ph ∀i (12)

= τavg − τi ∀i (13)
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Fig. 1. Original signal
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Fig. 2. Normalised signal shifti = CGavg − CGi

By applying this shift all the spectra move to the reference

CG and hence shall be normalised.

The normalisation is illustrated using a synthetic example.

Fig.1 depicts three Gaussian signals which are shifted versions

of each other. The CG of a Gaussian signal is nothing but its

mean(indicated by the vertical dotted line). The reference CG

with respect to which the shift will be estimated is the average

CG(indicated by the black dotted line). All the spectra shall

move towards this reference as shown in Fig.2 and hence are

shift normalised.

The normalisation can be equivalently done in the cepstral

domain by applying the shift in phase term as:

|Dph(c)|ejφph(c)ejτicej(shifti
ph)c (14)

|Dph(c)|ejφph(c)ejτicej(τavg−τi)c (15)

Then, the new normalised features are given as:

|Dph(c)|ejφph(c)ejτavg . It can be seen that the speaker

specific shift factor τi is nullified.

IV. RECOGNITION EXPERIMENTS

We now compare the performance of our proposed shift

based speaker normalisation approach with the conventional

maximum likelihood based approach for VTLN. The exper-

iments were done on phonemes extracted from the TIMIT

database. We have two sets of experiments, one set uses mid-

frames (single frame in the centre) of the phoneme and another

using all the frames of that particular phoneme. In mid-frame

experiments, we used eight vowels in both training and testing,

namely aa, ae, ao, eh, er, ih, iy, ow and uw. In full-frame

experiments, we use fifteen vowels both in training and testing,

namely aa, ae, ah, ao, aw, ay, eh, er, ey, ih, iy, ow, oy, uh



TABLE I
MID FRAME VOWEL RECOGNITION

Method Performance

Baseline 57.43

CG-Oracle 73.64

and uw. For mid-frame experiments, we used 13 dimensional

cepstral coefficients containing c1, . . . , c12 (excluding c0) and

normalised log-energy. We used a single emitting state with

8 gaussian mixtures and diagonal covariance. For full-frame

experiments, 26 dimensional cepstral coefficients containing

C1 . . . C12 (excluding C0) along with normalised log-energy

and the differential coefficients. In either of the cases we

performed cepstral mean subtraction.

V. PERFORMANCE OF PROPOSED METHOD

Table.I shows the performance of the proposed approach on

mid-frame data. Here we can not present VTLN performance

results as there is only one speech frame per utterance. In this

case, we performed an oracle (assume that true transcription

is known during testing) experiment on this data to understand

the normalisation due to CG. Assuming the true transcription

to be known during testing, we are providing information

about the reference CG to calculate the necessary shift for

normalisation. Once the normalisation is done, we test the

normalised utterance with all models and choose the one

with maximum log-likelihood as its correct transcription. The

results indicate that the method has potential and if performed

in the right frame work should yield good results. This exper-

iment also indicates that this is the best possible recognition

performance we can obtain.

Another approach to understand the normalisation perfor-

mance is to measure the separability of the normalised models.

One good measure of the separability is F-ratio between

models considered pair-wise. It is given mathematically as:

fratioab =
(µa − µb)

2

(σa + σb)/2
(16)

where µ is the mean and σ the variance. Higher the F-

ratios, better is the separation between models. Tables III and

IV show the F-ratios of the baseline and normalised models

for mid-frame data. We observe the F-ratios are better for

normalised models indicating that the shift estimated using

CG of the spectra are indeed doing the right job.

We also performed full-frame vowel recognition experi-

ments in order to understand how the proposed approach

works as the confusion in the data increases and also taking

into account the co-articulation effects. Table.II shows the

performance of full-frame data. Here also, we perform oracle

experiments on both VTLN as well as CG methods. We

observe that VTLN performs better than CG as expected. This

is because, VTLN uses a ML based approach and finds the

best warping factor, where as CG method estimates the shift

factor required for normalisation in one single step completely

eliminating the need for ML based search which was our

TABLE II
TIMIT FULL FRAME 15-VOWELS

Method Performance

Baseline 61.80

VTLN-Oracle 69.82

CG-Oracle 66.72

motivation. Though we are slightly inferior we gain a lot in

computation.

VI. CONCLUSIONS AND FUTURE WORK

In the paper, we proposed a novel shift based speaker nor-

malisation approach using spectral centre of gravity. The main

motivation was to eliminate the need for ML based search

followed in VTLN to gain computational advantage. Such a

method will be of great use for online applications. Though we

have only presented preliminary results, which look promising,

it requires much more testing before we can come to an

assertive conclusion. There are lot of implementation issues

that need to be looked at and we are working on them. One

such issue is, how to apply the shift? We can apply the shift in

the cepstral phase or directly shift the log-smoothed spectrum.

Shift in the log-smoothed spectrum can be done by appending

zeros in the beginning or at the end, repeating the last or

first samples or using a non-uniform scaling method based

on the direction of the shift[6]. We also observed that CG is

sensitive to DC shifts, which provoked us to investigate in

the direction of thresholding the spectra. We are still working

on these issues to understand the robustness of the proposed

approach.
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TABLE III
FRATIOS BASELINE

aa ae ah eh er ih ow uh

aa 0 8.5089 2.5851 9.8083 10.3862 19.0837 3.7922 8.4871

ae 8.5089 0 4.4791 1.1748 12.9936 5.6635 10.2017 6.5655

ah 2.5851 4.4791 0 3.8172 8.2609 9.6302 2.6746 3.0485

eh 9.8083 1.1748 3.8172 0 8.9676 2.6128 8.3729 3.2901

er 10.3862 12.9936 8.2609 8.9676 0 14.3265 11.6121 7.9099

ih 19.0837 5.6635 9.6302 2.6128 14.3265 0 12.7858 3.5239

ow 3.7922 10.2017 2.6746 8.3729 11.6121 12.7858 0 3.3048

uh 8.4871 6.5655 3.0485 3.2901 7.9099 3.5239 3.3048 0

TABLE IV
FRATIOS CG MODEL

aa ae ah eh er ih ow uh

aa 0 11.22 3.01 11.28 12.67 21.09 3.823 8.14

ae 11.22 0 5.88 1.32 19.826 5.39 13.83 7.80

ah 3.01 5.88 0 4.47 11.61 10.60 3.405 2.63

eh 11.27 1.32 4.47 0 13.90 2.61 10.640 3.87

er 12.67 19.83 11.61 13.80 0 20.58 13.798 10.31

ih 21.09 5.39 10.60 2.61 20.58 0 15.811 4.87

ow 3.82 13.83 3.40 10.64 13.800 15.81 0 3.75

uh 8.14 7.80 2.63 3.87 10.31 4.87 3.75 0


