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Signal Recovery: Formulation

Compressed Sensing: a technique for sparse signal recovery

Connections to Coding

`p Minimization/Decoding

Random Measurements

Examples and Applications

Some Algorithms



Solving Equations

4x + 6y = 9

2x + 2y = 3

[
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]
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More Equations

c1

c2

c3

 =

a11 a12

a21 a22

a31 a32

[x1

x2

]

Estimated Solution

x̂ = argmin
x̄∈R2

||c̄ − Ax̄ ||2

xLSE =
(
ATA

)−1
AT c̄ .
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More Unknowns

4x1 + 6x2 = 9

ä Many Solutions in general!

ä Which one(s) do we need?
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Linear Solvers

ä We have M linear equations and N unknowns.

yj =
∑
i

ajixi , 0 ≤ i ≤ M − 1.

ȳ
M×1

= A
M×N

x̄
N×1

ä An under-determined set of equations, M < N.

ä However, assume x to be sparse (a few odd values).

ä More precisely, sparsity s represents the support of the signal x̄ .



System and Objectives


y1

y2

·
·
yM

 =


a11 a12 · · a1N

a21 a22 · · a2N

· · · · ·
· · · · ·

aM1 aM2 · · aMN



x1

x2

·
·
xN



yi =< ~ai , x̄ >

ȳ =
∑
j

xj āj

ä Our aim is to find the sparse signal(s) x̂ which satisfy the above.

ä We need to design the matrix A, as well as a recovery algorithm.



Design Example 1

ä N = 8, M = 1, s = 1, xi ∈ {0, 1} :[
a1 a2 a3 a4 a5 a6 a7 a8

] 

x1

x2

x3

x4

x5

x6

x7

x8


= y1

ä Solution:

A =
[
1 2 3 4 5 6 7 8

]
If y1 = j , declare xj = 1 and all others are zero.



Design Example 2

ä N = 8, M = 2, s = 1, xi ∈ {0, 1, 2 · ·} :[
a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

]

x1

x2

x3

x4

x5

x6

x7

x8


=

[
y1

y2

]

ä Solution:

A =

[
1 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8

]
Set j = y2

y1
and declare xj = y1; all others are zero.



Design Example 3

ä N = 8, M = 4, s = 2, xi ∈ {0, 1, · · 9} :


a11 a12 a13 a14 a15 a16 a17 a18

a21 a22 a23 a24 a25 a26 a27 a28

a31 a32 a33 a34 a35 a36 a37 a38

a41 a42 a43 a44 a45 a46 a47 a48




x1

x2

x3

x4

x5

x6

x7

x8


=


y1

y2

y3

y4



 1 20 30 40 50 60 70 80

1 21 31 41 51 61 71 81

1 22 32 42 52 62 72 82

1 23 33 43 53 63 73 83




x1

x2

x3

x4

x5

x6

x7

x8


=


y1

y2

y3

y4



ä Challenge:

Can you design a matrix A such that 0 ≤ aij ≤ 10 for this problem.



Quick Recap

ä A set of equations

ȳ
M×1

= A
M×N

x̄
N×1

ä We wish to get back x ∈ RN from this M measurements.

ä This is under-determined, little hope of getting x back in general.

ä However, we can design the system to recover all sparse inputs x .

ä In particular, if supp(x) ≤ s, it has to be recovered.

ä Goal: Design the matrix A and a recovery strategy.



Section 2

Compressed Sensing: Overview
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Compressed Sensing

Lungern, Switzerland, Oct 2006Oberland, Switzerland, Oct 2006EPFL, Switzerland, May 2007



Magnetic Resonance Imaging
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CS Magic?

C
an

wegetbacktheoriginalý

ä Surely you are joking Mr. Xxxxman.

ä Frequency domain seems to do wonders here.



Family Affairs

Is there a way to weed out the junk
at the source itself, while collecting
most of the essential stuff.?

ala Candes, Romberg, Tao

Moral: There are adversarial signals for which CompressedSensing may fail



Fourier Incoherence

ä How can we get back our MRI from 10% of the measurements.

;

Haar

Transform

;

ä These images have inherent sparsity, or they are compressible.

ä Time-sparseness and frequency acquisition have a close connection.



Section 3

Coding Connections
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Fourier Transform

ä Discrete Fourier Transform

X [k] =
∑
n

xnα
k
n
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2π
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=
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Coding Connections

ä Communication Channel

x1, x2, ··, xk Channel x̂1, x̂2, ··, x̂k

ä Channel Coding

[0, 0, ··, 0, x1, x2, ··, xk ]
Encoder
(IDFT) [X̂0, X̂1, ··, X̂N−1]

Channel

[y0, y1, ··, yN−1]
Decoder
(DFT)

[ê0, ··, êm|x̂1, x̂2, ··, x̂k ]

ä If there are no errors, êi = 0 and x̂i = xi , ∀i .



Error Correction

ä In the presence of errors, say N = 8 and at most two errors,
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ä We can solve this to find the error locations and values.

ä Once the error vector is known, simply subtract it from ȳ .

ä This is the principle of Reed-Solomon codes, used in CDs/Memorys.



How it works

ä Consider the first m = 2s rows of the Fourier matrix.
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ä Pick any 2s columns from this restricted matrix.
1 1 1 1
α1
k α1

l α1
m α1

n

α2
k α2

l α2
m α2

n

α3
k α3

l α3
m α3

n


ä The determinant is non-zero if αi 6= αj ⇒ cols. linearly independent.



Unique Solution

ä Suppose ∃u, v ∈ RN s.t. supp(u) ≤ s, supp(v) ≤ s and,

Au = y and Av = y

u
A

v A

y

s−sparse ∈ RN R2s

“A cannot distinguish
between u and v”

This will never happen!

ä Indeed, Au = Av ⇒ A(u− v) = 0 and we know u− v is 2s−sparse.

ä But any 2s columns of A are linearly independent ⇒ A(u − v) 6= 0.
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Key Property

Any 2s columns of the measurement matrix A has to be linearly
independent for detecting all s−sparse signals from y = Ax .

ä We will say A ∈ P, if A has the above property (future use).

ä Naive Decoding: Brute force search . (i.e. `0− minimization)

ä There is only one sparse x such that Ax = y , if A ∈ P.



Fourier Inverse
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ä For a given N, any 2s consecutive rows can be used as A.

ä If N is prime, arbitrary 2s rows suffice Tao’2004.



Section 4

`p minimization
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Fourier Incoherence Tao’04

Consider a discrete-time signal x ∈ CN and a set of frequencies
Ω. Is it possible to reconstruct x from the partial knowledge of its
Fourier coefficients on the set Ω ?.

Suppose x is supported on T ⊂ ZN

Let N be a prime integer.

Consider a set of frequencies Ω ⊂ ZN , and Xk ,∀k ∈ Ω.

2|T | < |Ω| ⇒ x can be reconstructed from Xk |Ω

f̂ (ω) = 1√
N

∑
n f [n] exp(−jωn)



`0 Minimization


y1

y2

·
·
yM

 =


a11 a12 · · a1N

a21 a22 · · a2N

· · · · ·
· · · · ·

aM1 aM2 · · aMN



x1

x2

·
·
xN


ä Assume the solution x̂ is unique, and supp(x̂) ≤ s.

ä For every
(
N
s

)
columns, say B

M×s
, check if ∃ u : Bu = y .

ä Can be very hard, if A is not very structured.

ä Drawback: Severe limitation on the choice of matrix A.



3 Drawbacks

ä Issue 1
2s Fourier measurements suffice if N is prime or successive
coefficients are available.

ä Issue 2
Fourier measurements are good only for a selected class of signals.

ä Issue 3
Even with in a ‘working class’, it seems prohibitively complex to
isolate the actual solution (recovery).



Extensions: CandesTao’05 ’06

ä Any M = c 2s log N
s measurements suffice to recover s−sparse

signals most of the times.

ä We can replace the elements of A by random entries from an
appropriate distribution, example: Gaussian, ±1 so on.

ä Furthermore, and most importantly there exists linear programs
which effectively recover sparse signals from the M measurements.



Compressed Sensing: CandesRombergTao’06, Donoho’06

Consider a discrete-time signal x ∈ CN and a randomly chosen
set of frequencies Ω. Is it possible to reconstruct x from the partial
knowledge of its Fourier coefficients Xk , on the set Ω ?.

Suppose x is the superposition of |T | spikes

xn =
∑
m∈T

xmδ(n −m)

and

2|T | ≤ CM .(logN)−1.|Ω|

then with probability > 1− O(N−M) the answer is YES!

x = argmin
u

||u||`1 , s.t. Uk = Xk for all k ∈ Ω



Why `1 Minimization?

A first attempt: minimum energy solution or `2 minimum

min x†x s.t. Ax = y

Using Lagrange cost function,

J(x) = ||x ||2`2
+ λ†(y − Ax)

Pre-mulitplying with Moore-Penrose pseudo-inverse is the minimizer

x = A†(AA†)−1y

0 1024

`0-norm for
min. supp

NP-hard to
solve!

`1 the
convex
answer!



Why l2 fails?

min
x∈RN

||x ||`2

s. t. Ax = y

ä ||x ||`2 = r : sphere of radius r .

ä Dual View:
Find the maximal sphere
touching the half-space.

A
x
=
y



L1 succeeds

min ||x ||`1

s .t. Ax = y

ä ||x ||`1 = c , is a polyhedron.

ä Find the biggest such
polyhedron touching Ax = y .

A
x
=
y

ä Key: We should avoid sparse signals competing with each other.



Section 5

Random Measurement Matrices
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Sparse Competition

ä If we choose A ∈ P, then every s-sparse vector at the input gives
rise to a unique set of measurements.

ä In this case, `0 minimization will theoretically succeed, perhaps with
unmanageable computational complexity.

ä In order that `1 minimization succeeds, we need more properties
than A ∈ P.

ä Nevertheless, let us first search for matrices which are in P (i.e, any
2s columns are linearly independent)



Common sense is Random

ä How will you generate a tall M × k full rank matrix B.

ä Assume that under the choice of iid selection from some distribution,

P(rank(B) = k) ≥ 1− exp(−cM).

ä If we generate our measurement matrix A using this distribution,

P(A /∈ P) ≤
(
N

2s

)
exp(−cM)

≤
(
Ne

2s

)2s

exp(−cM)

ä

M = O(s log
N

s
)

may guarantee that A is in P.



Random Full Rank Rudelson-Vershynin’08-10

ä

P(rank(B) = k) ≥ P(σmin(B) ≥ ε), ε > 0.

where σmin(B) is the smallest eigen value of
√
B†B.

ä Non-asymptotic analysis of tall random matrices,

σmin(B) ≥
√
M − C

√
k − d

with probability exceeding 1− 2 exp(−cd2), if the elements are taken
independently from any sub-Gaussian distribution.

ä Restricted Isometry

(1− δs)||x ||`2 ≤ ||Ax ||`2 ≤ (1 + δs)||x ||`2

under suitable scaling of the matrix A for all s−sparse signals.



Moving from Fourier

ä Fourier measurements tackle time-sparsity.

I however, images are sparse in wavelet basis.

ä Natural extensions can cover all sorts of sparsity.

f̄ =
∑
i∈T

αi ψ̄i , where |T | << N

= Ψx , where x is sparse .

ä The measurements now become

y = ΦΨx

ä Random φ provides a ‘universality’ to the encoding process, thus we
can rip any sparse signal.



Restricted Isometry Property (RIP) CandesTao’05

Exact reconstruction by `1 minimization is guaranteed by the mea-
surement matrix A satisfying the following property.

RIP of order 2s
”Any 2s columns of A are nearly orthogonal”

x1

x2

Ax2

Ax1

Measurement
Matrix

Ax1

”2s RIP ⇒ Pairwise
distances are nearly
preserved for s-
sparse signals”



RIP and `1

ä Assume v was the true signal and y = Av .

ä `1 minimization will succeed if,

||v ||`1 ≤ ||u||`1 + λT (y − Au) ,∀u ∈ RN

for some λ ∈ RM (Lagrange multiplier)

ä Denote
I J : the set of column indices of A.
I T : the support set of v (note that T ⊂ J).

Au =
∑
j∈J

uj āj ; Av =
∑
j∈T

vj āj

where āj denotes the j th column of A.



`1 Solution

||u||`1 + λT (y − Au)

= ||u||`1 + λT (
∑
j∈T

vj āj)− λT (
∑
j∈J

uj āj)

= ||u||`1 +
∑
j∈T

vj < λ, āj > −
∑
j∈J

uj < λ, āj >

If < λ, āj >= sign(vj), ∀j ∈ T , then

||u||`1 + λT (y − Au)

= ||u||`1 + ||v ||`1 −
∑
j∈T

ujsign(vj)−
∑
j /∈T

uj < λ, āj >

= ||v ||`1 +
∑
j∈T

uj(sign(uj)− sign(vj))

+
∑
j /∈T

uj(sign(uj)− < λ, āj >)



Existence of λ ∈ RM

ä If there exists a λ ∈ RM such that,
I < λ, āj > = sign(vj), ∀j ∈ T

I | < λ, āj > | < 1, ∀j /∈ T

then `1 minimization will indeed find the vector v .

ä Loosely, this existence is guaranteed for any s− sparse vector, by
having a RIP of order 2s on the matrix A.



RIPCandes’08

RIP guarantees exact recovery of S− sparse signals and recovers
the S− largest entry of compressible vectors [CandesWakin’08].

There is no probability, it is deterministic

This is more powerful and general than Fourier measurements.

How to find measurement matrices obeying RIP

CandesWakin, ‘Unpublished result’, See CandesTao’05 for a related result



Measurements obeying RIP

The following measurement matrices,

(i) Gaussian N (0, 1
m ) iid entries

(ii) Bernoulli ( 1
2 ) iid entries

(iii) Columns uniformly at random on unit sphere

satisfy RIP with overwhelming probability, if

M ≥ C .S log N
S



Section 6

Examples and Applications
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Reconstruction

By a Linear Program

min||x ||`1 such that Ax = y

Off the shelf efficient solvers are available

In presence of error, LASSO algortihm

min||x ||`1 such that ||Ax − y ||`2 ≤ ε



CS as CDMA channel

Base
station

User 1 r1

User 2 r2

User N rN

h1

h2

hn

rj = hjx + wj

ȳ = Ah̄ + z̄

Each user sends a short normalized pseudo-noise sequence in a CDMA
scheme.



Simulation Study I

σ2 = 0.01, SNR ≈ 0dB (per user above noise)

1.0

2.0
2.5

1 210

User Number

Figure: Original Signal and Reconstruction from 100 measurements



Simulation Study II

σ2 = 10−4, SNR ≈ 20dB (per user above noise)

1.0

2.0
2.5

1 210

User Number

Figure: Original Signal and Reconstruction from 100 measurements



CS vs Matched Filtering

In MF, each user matches y with its signature

σ2 = 10−4, SNR ≈ 20dB (per user above noise)

1.0

2.0
2.5

1 210

User Number

Figure: Reconstructions from 100 measurements for MF and CS



Converse

Encoder
Side In-
formation

E1

E2

·
·

Es

π(αi )

U1

U2

Us

π(α2)

π(αs)

∑
α1

α2

αs

Decoder
ᾱ

Q1

Qs

z

Io :- Zero Indices
(x(i) = 0 iff i ∈ I0)

Consider CS as a CDMA scheme with the non-zero values as transmitters



Bernoulli Measurements

Theorem

If the measurement matrix is chosen by Bernoulli( 1
2 ) on {±1},

m ≥
2s log2

n
s

log2 πes/2

for Perror to go vanishingly small.



Single Pixel Camera

DMD

+ + − + −
+ + − − +
+ − + − +
− − + + −
− + + − +

ä Can change imaging concepts in the non-visible spectrum.



A Small Puzzle

10× 10 gms 10× 10 gms 10× 11 gms 10× 10 gms

1 2 k 10

Bag Number = W − 550

W =
∑

aixi , where ai = i , xi ∈ {10, 11}

1) One Sparsity needs one measurement

2) Measurements should be incoherent
to sparsity



Compressed Sensing vs Group Testing

N soldiers return after a war. It is compulsory to have their blood tested
before reunion with family. Blood Tests are very costly, so is the time
spent waiting to meet the families. We need a strategy (a sequence of
tests) with objectives,

ä find the persons having a particular disease A.

ä the minimum number of tests (and/or time).

ä Huge savings by grouping and testing

ä Compress sensing is analogous to group-testing

I a number of tests in parallel
I all the results available simultaneously.

ä An exercise of picking the odd man/men (signals) out.



Section 7

Recovery Algorithms
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Recovery Algorithms

ä Greedy Approaches
I Orthogonal Matching Pursuit (Tropp)
I CoSamp and other variants

ä LP Based methods
I Basis Pursuit (Donoho)
I LASSO (QP) and gradient based methods

ä Iterative algorithms
I Iterative Hard Thresholding



Orthogonal Matching Pursuit (OMP)

ä Greedy search to find x from Ax = y .

ä Let S ⊂ J be a set of column indices.

ä AS denotes matrix formed by those columns in S .

a11

a21

·
·

aM1

a12

a22

·
·

aM2

a1N

a2N

·
·

aMN

a13

a23

·
·

aM3

a1k

a2k

·
·

aMk

a1l

a2l

·
·

aMl

S [i ]
⋃

j∗[i ]S [i + 1] =
j∗[i ] = argmax

j /∈S[i ]

|< āj , r [i ] > |

ä r [i ] is the residual error in the best fit of y using AS[i ].



OMP Performance
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s = 4
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Figure: Percentage of 1000 input signals correctly recovered as a function of
the number M of measurements for different sparsity levels s in dimension
N = 256.



Pattern Recognition

ä Consider an image data-base with N images,

{I1, I2, ··, IN}, Ii ∈ RK

ä Given a query image q, find the closest allies.

I11

I12

·
·
·
·

I1K

I21

I22

·
·
·
·

I2K

IN1

IN2

·
·
·
·

INK

I31

I32

·
·
·
·

I3K

Ik1

Ik2

·
·
·
·

IkK

Il1
Il2
·
·
·
·
IlK

x1

x2

·
·
·
·
xK

=

q1

q2

·
·
·
·
qK

S [i ]
⋃

j∗[i ]S [i + 1] =

ä Each column here is a (nearly) sparse vector in some basis.



Searching Random Projections

ä Generate a lower dimensional projection by premultiplying with a
random A.

A
M×K

DI
K×N

x
K×1

= A
M×K

q
K×1

where DI is the database matrix.

ä Now run OMP to resolve x from the measurements y = Aq.

ä The system complexity is greatly reduced.



Conclusion

The usual acquire(sense) and then compress paradigm is not cost
effective.

Compressed Sensing allievates this problem by doing compression
at sensing itself

We studied some simple connections between CS and coding theory

Random acquisition schemes give a universality to the acquisition
schemes

Applications and Extensions are emerging at rapid pace, a good
area for research.



Source

Most related material (including software, applications, documents,
opportunities) available at the dedicated website
http://dsp.rice.edu/cs

IEEE Signal Processing Magazine, March 2008 was on the theme
‘Compressed Sensing’, and covered several applications and algorithms.

Terrence Tao’s Blog has lot of useful information on compressed sensing
and complexity.
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