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An Introduction to Reinforcement Learning
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Figure: Agent-Environment Interaction
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Markov Decision Processes

Puterman [1994], Bertsekas [2005,2007]
A Markov Decision Process (MDP) is a controlled random process
{st} that depends on a control-valued sequence {at} and satisfies
the controlled Markov property (below)
Let S denote the state space and A the action space. Assume S
and A are finite sets
In general, when state is i ∈ S, feasible action space is A(i). Here
A = ∪i∈SA(i)
Let k(st ,at , st+1) be the cost incurred when state at time t is st ,
action chosen is at and the next state is st+1.

t t+1

st st+1at k(s
t , at ,st+1 )

Figure: State, Action and Single-Stage Cost
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The Controlled Markov Property

For all i0, i1, . . . , s, s′,b0,b1 . . ., a in appropriate sets,

P(st+1 = s′ | st = s,at = a, . . . , s0 = i0,a0 = b0)

= P(st+1 = s′ | st = s,at = a) = Pa
ss′

t t+1 t+2t−1t−2

st
at

st+1

Figure: The Controlled Markov Behaviour
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The Finite Horizon Problem

Here horizon length = N <∞

By an admissible policy π, we mean a sequence of functions
π = {µ0, µ1, . . . , µN−1} such that each µn : S → A with
µn(j) ∈ A(j), j ∈ S. At instant n, actions under π are selected
according to µn.

Let Π be set of all admissible policies

Objective: Find a π∗ ∈ Π that minimizes

Jπ(i) = E





N−1
∑

j=0

k(Xj , µj(Xj),Xj+1) + h(XN) | X0 = i



 ,

where h(l) is the cost incurred when the ‘terminal state’ is l ∈ S.

Let J∗(i) = min
π∈Π

Jπ(i) = Jπ∗(i)
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The Principle of Optimality

Let π∗ = {µ∗0, µ
∗
1, . . . , µ

∗
N−1} be an optimal policy. Suppose that

when using π∗, a state xi occurs at time i with positive probability.
Consider the subproblem – minimize from time i to N,

E





N−1
∑

j=i

k(Xj , µj(Xj),Xj+1) + h(XN) | Xi = xi



 .

Then the truncated policy {µ∗i , µ
∗
i+1, . . . , µ

∗
N−1} is optimal for this

subproblem.

Thus optimal policy can be constructed by going backwards in
time i.e., construct optimal policy for tail subproblem involving last
stage, then extending optimal policy to tail subproblem involving
last two stages and continuing till optimal policy for full problem is
constructed
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The Dynamic Programming Algorithm

For every initial state i0, the optimal cost J∗(i0) of the basic
problem equals J0(i0), given by the last step of the following
algorithm, that proceeds backwards in time from period N − 1 to
period 0:

JN(iN) = h(iN),

Jl(il) = min
ul∈A(il )

E [k(Xl ,ul ,Xl+1) + Jl+1(Xl+1) | Xl = il ] ,

= min
ul∈A(il )

∑

j∈S

pul
il j

(k(il ,ul , j) + Jl+1(j)) ,

∀l = 0,1, . . . ,N − 1, ∀i0, . . . , iN ∈ S

If u∗
l = µ∗l (il) minimizes RHS above for each il and l , then the

policy π∗ = {µ∗0, . . . , µ
∗
N−1} is optimal
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Example – Control of a Queue

n

0 1 2 3 N−1 N

Figure: A Discrete Time Queue
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Example – The Setting

Assume arrivals/departures at discrete instants. Only one
customer can be served in a period. A customer can take multiple
periods for service

Two types of service – fast (uf with cost cf per period) and slow
(us with cost cs per period)

Let pm = probability of m arrivals in a period (m ≥ 0)

With fast (slow) service, customer in service at beginning of period
will finish service w.p. qf (qs) independent of number of periods a
customer has been in service for and the number of customers in
system. Assume qf > qs

Assume cost r(i) is incurred in each period for which i customers
are in system. Also, let R(i) be terminal cost if i customers are left
at time N in system
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Example – Transition Probabilities

puf
0j = pus

0j = pj (j = 0,1, . . . ,n − 1)

puf
0n = pus

0n =
∑∞

m=n pm (j = n)

puf
ij = pus

ij = 0 (j < i − 1, i > 0)

puf
ij = qf p0 (j = i − 1, i = 0)

pus
ij = qsp0 (j = i − 1, i = 0)

puf
ij = qf pj−i+1 + (1 − qf )pj−i (i − 1 < j < n − 1)

pus
ij = qspj−i+1 + (1 − qs)pj−i (i − 1 < j < n − 1)

puf
i(n−1) = qf

∑∞
m=n−i pm + (1 − qf )pn−1−i

pus
i(n−1) = qs

∑∞
m=n−i pm + (1 − qs)pn−1−i

puf
in = (1 − qf )

∑∞
m=n−i pm

pus
in = (1 − qs)

∑∞
m=n−i pm
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Example – DP Algorithm

Single stage cost = r(i) + cf if fast service is used; else r(i) + cs if
slow service is used

JN(i) = R(i),

Jk (i) = min(cf + r(i) +
∑

j∈S

puf
ij Jk+1(j), cs + r(i) +

∑

j∈S

pus
ij Jk+1(j)),

∀k = 1, . . . ,N − 1, i ∈ S

For i = 0, no service is required. Thus A(0) = φ, while
A(i) = {uf ,us}, for all i > 0. Thus, JN(0) = R(0) while
Jk (0) = r(0) +

∑

j∈S puf
0j Jk+1(j) for k = 1, . . . ,N − 1. Note here

that puf
0j = pus

0j (shown before) and in fact equals p0j i.e., no action
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The Infinite Horizon Discounted Cost Problem

Here N = ∞

An admissible policy π is a sequence of functions
π = {µ0, µ1, . . . , } such that each µn : S → A and µn(j) ∈ A(j),
∀j ∈ S. At instant n, actions under π are selected according to µn.

Let Π be set of all admissible policies

Objective: Find a π∗ ∈ Π that minimizes the cost-to-go or the value
function

Vπ(i) = E





∞
∑

j=0

γkk(Xj , µj(Xj),Xj+1) | X0 = i





Let V ∗(i) = min
π∈Π

Vπ(i) = Vπ∗(i)

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 13 / 79



Stationary Policies

A stationary deterministic policy (SDP) π is one for which µi ≡ µ
for all i = 0,1,2, . . .. Many times we just call µ an SDP.

A stationary randomized policy φ can be characterized by
distributions φ(i) = (φ(i ,a),a ∈ A(i)), i ∈ S.

It can be shown that the optimal policy (i.e., the one that attains
the minimum) is an SDP and so also an SRP

Let T ,Tµ : R|S| → R|S| be the maps

TJ(i) = min
a∈A(i)

∑

j∈S

Pa
ij (k(i ,a, j) + γJ(j)),

TµJ(i) =
∑

j∈S

Pµ(i)
ij (k(i , µ(i), j) + γJ(j)),

i ∈ S.
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Finite Horizon Operators

Let T kJ(i) = T (T k−1J(i)), T k
µ J(i) = Tµ(T k−1

µ J(i)), i ∈ S, k ≥ 0.
Here T 0J = T 0

µJ = J.

Note that

T 2J(i) = min
a∈A(i)

∑

j

Pa
ij (k(i ,a, j) + γTJ(j))

= min
a∈A(i)

(
∑

j

Pa
ij (k(i ,a, j) + γ min

u∈A(j)

∑

l

Pu
jl (k(j ,u, l) + γJ(l)))

= min
a∈A(i)

(
∑

j

Pa
ij (k(i ,a, j) + min

u∈A(j)

∑

l

Pu
jl (γk(j ,u, l) + γ2J(l)))

The above corresponds to DP algorithm for a two-stage
γ-discounted problem with initial state i , cost per stage k and
terminal cost function γ2J.

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 15 / 79



Monotonicity of Operators T k

Proposition 1: For any functions J, J ′ : S → R, J(i) ≤ J ′(i), ∀i ∈ S
implies T kJ(i) ≤ T kJ ′(i) and T k

µ J(i) ≤ T k
µ J(i) for all i ∈ S,

k = 1,2, . . ..

Proof: Since T kJ can be viewed as a k-stage problem cost with
terminal cost function γkJ, J ≤ J ′ implies T kJ ≤ T kJ ′. 2

Proposition 2: ∀k ≥ 0, i ∈ S,

T k(J + re)(i) = T kJ(i) + γk r ,

T k
µ (J + re)(i) = T k

µ J(i) + γk r ,

where e = (1, . . . ,1)T is a |S|-dimensional unit vector.
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Convergence of DP

We assume that |k(i ,a, j)| ≤ M <∞, for all i , j ∈ S, a ∈ A(i).

Proposition 3(a): For any bounded function J : S → R,

V ∗(i) = lim
N→∞

T NJ(i), ∀i ∈ S.

Proposition 3(b): For any SDP µ and bounded J,

Vµ(i) = lim
N→∞

T N
µ J(i), ∀i ∈ S,

where Vµ = Vπ with π = {µ, µ, . . .}.
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The Bellman Equation

Proposition 4 – The Bellman equation: The optimal cost function
V ∗ satisfies

V ∗(i) = min
a∈A(i)

∑

j

Pa
ij (k(i ,a, j) + γV ∗(j)), i ∈ S, or

V ∗ = TV ∗

Further, V ∗ is the unique solution of this equation within the class
of bounded functions.
Proposition 5 – The Poisson Equation: For every stationary policy
µ, the associated cost function Vµ satisfies

Vµ(i) =
∑

j

Pµ(i)
ij (k(i , µ(i), j) + γVµ(j)), i ∈ S, or

Vµ = TµVµ

Further, Vµ is the unique solution of this equation within the class
of bounded functions.
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The Optimality Condition

Proposition 6 – Necessary and Sufficient Condition for Optimality:
A stationary policy µ is optimal if and only if µ(i) attains the
minimum in the Bellman equation for each i ∈ S, i.e., TV ∗ = TµV ∗

Proof: Suppose TV ∗ = TµV ∗. Then by the Bellman equation,

V ∗ = TV ∗ = TµV ∗.

Now since the operator Tµ has a unique fixed point Vµ (Result 4),
we have V ∗ = Vµ i.e., µ is optimal
Suppose now that µ is optimal. Then V ∗ = Vµ. Hence V ∗ = TµV ∗

(Proposition 5) = TV ∗ (Proposition 4). 2

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 19 / 79



Numerical Approaches

Value Iteration:

Recall that (Propositions 3(a)-3(b)) V ∗(i) = lim
N→∞

T NJ1(i) and

Vµ(i) = lim
N→∞

T N
µ J2(i) for any bounded J1, J2 : S → R.

Start with initial estimate V0 = J1 and iterate

Vn+1 = TVn i.e.,

Vn+1(i) = min
a

∑

j

Pa
ij (k(i ,a, j) + γVn(j))

Then Vn → V ∗.

Similarly Wn, n ≥ 0 with W0 = J2 and Wn+1 = TµWn satisfies
Wn → Vµ.
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Towards Policy Iteration

The following is a key result on which policy iteration is based.

Proposition 7: Let µ and µ̄ be SDPs such that Tµ̄Vµ = TVµ, i.e.,

∑

j

P µ̄(i)
ij (k(i , µ̄(i), j) + γVµ(j))

= min
a∈A(i)





∑

j

Pa
ij (k(i ,a, j) + γVµ(j)



 .

Then Vµ̄(i) ≤ Vµ(i), ∀i ∈ S. Further, if µ is not optimal, strict
inequality holds for at least one state i .
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The Policy Iteration Algorithm

(Initialize:) Start with a given stationary policy µ0.

(Policy Evaluation:) Let Kµn = (
∑

j Pµn(i)
ij k(i , µn(i), j), i ∈ S)T ,

Pµn = [[Pµn(i)
ij ]]i ,j∈S and Vµn = (Vµn(i), i ∈ S)T . Solve the linear

system of equations Vµn = Kµn + γPµnVµn .

If Vµn = Vµn−1, terminate procedure, else go to next step.

(Policy Improvement:) Find a stationary policy µn+1 such that

∑

j

Pµn+1(i)
ij (k(i , µn+1(i), j) + γVµn(j))

= min
a∈A(i)

∑

j

Pa
ij (k(i ,a, j) + γVµn(j))

Set n := n + 1 and go to the second step (PE) above.
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Long-run Average Cost Problems

N = ∞

Objective: Find a π∗ ∈ Π that minimizes over all π ∈ Π, the
average cost-per-stage starting from a given initial state i ∈ S i.e.,

λπ(i) = lim sup
N→∞

1
N

E





N−1
∑

j=0

k(Xj , µj(Xj),Xj+1) | X0 = i





Note that limit may not exist in general (hence we use limsup).
Limit can be shown to exist under any stationary policy µ if the
underlying Markov chain {Xn} under that policy is ergodic.

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 23 / 79



The Bellman Optimality Equation

Assume that {Xn} is ergodic under all stationary policies

Poisson Equation: For all i ∈ S and given a stationary policy µ,

λµ + hµ(i) = Pµ(i)
ij (k(i , µ(i), j) + hµ(j)),

where hµ(i) is the differential cost under µ in state i defined as

hµ(i) = Eµ

[

∞
∑

l=0

(k(Xl , µ(Xl),Xl+1) − λµ) | X0 = i

]

Bellman Equation: For all i ∈ S,

λ∗ + h(i) = min
a∈A(i)

Pa
ij (k(i ,a, j) + h(j)),

where λ∗ is the optimal average cost and h(i) is the differential
cost in state i i.e., h(i) = minµ hµ(i)
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Relation between Average and Discounted Cost

Let λµ(i) and Vγ,µ(i), i ∈ S denote the average and γ-discounted
costs from state i . Then

λµ(i) = lim sup
N→∞

1
N

E

[

N−1
∑

l=0

k(Xl , µ(Xl),Xl+1) | X0 = i

]

= lim sup
N→∞

lim
γ→1

E [
∑N−1

l=0 γ lk(Xl , µ(Xl),Xl+1) | X0 = i]
∑N−1

l=0 γ l

Assuming an interchange of limits (see Bertsekas (2007) for a
rigorous argument),

λµ(i) = lim
γ→1

lim sup
N→∞

E [
∑N−1

l=0 γ lk(Xl , µ(Xl),Xl+1) | X0 = i]
∑N−1

l=0 γ l

= lim
γ→1

(1 − γ)Vγ,µ(i)
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Value Iteration

VI–version 1:

Define operator T : R|S| → R|S| by Th = minµ(Kµ + Pµh). Here

Kµ = (
∑

j∈S Pµ(i)
ij k(i , µ(i), j), i ∈ S)T . Then one can show that

T rh/r → λ∗ as r → ∞.

VI–version 2 or relative value iteration:

Fix a state i0 ∈ S arbitrarily. Select a function h0 : S → R. Iterate
over n ≥ 0,

hn+1(i) = min
a∈A(i)

∑

j

Pa
ij (k(i ,a, j) + hn(j)) − hn(i0).

Then it can be shown that hn(i0) → λ∗ as n → ∞.
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Policy Iteration

Let µ0 be an estimate of the optimal policy. Fix a state i0 ∈ S
arbitrarily.

Policy Evaluation: In the nth stage, n ≥ 0, solve ∀i ∈ S,

hµn(i) =
∑

j

Pµn(i)
ij (k(i , µn(i), j) + hµn(j)) − hµn(i0)

If hµn = hµn−1 , terminate, else go to the next step.

Policy Improvement: For all i ∈ S,

µn+1(i) = arg min
a∈A(i)





∑

j

Pa
ij (k(i ,a, j) + hµn(j))



 .

It can be shown that µn → µ∗ for a stationary policy µ∗ such that
hµ∗

(i0) = λ∗.
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Limitations of Numerical Methods for Exact Schemes

For solving Bellman optimality equations (in various cases) using
numerical methods, one requires complete knowledge of transition
probabilities Pa

ij , i , j ∈ S, a ∈ A(i). (lack of model information)

The amount of computation required to solve Bellman equation
grows exponentially in the cardinality of the state and action
spaces. (curse of dimensionality)

Hence, one resorts to approaches that use a combination of
“simulation” and “feature-based approximations”
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Projection Based Methods – Policy Evaluation

Bertsekas [2010]

Consider the discounted cost case. Let

Vµ(i) ≈ Ṽθ(i) = θTφi ,

where φi = (φi(1), . . . , φi(d))T is a state-feature associated with
state i and θ = (θ1, . . . , θd )T is the associated parameter

Let Φ = [[φT
i ]]i∈S be the (|S| × d )-feature matrix. Let

Ṽθ = (Ṽθ(i), i ∈ S)T . Then Ṽθ = Φθ =
∑d

j=1 φ(j)θj , where
φ(j) = (φi(j), i ∈ S)T (the j th column of the Φ matrix).

The aim is to find the best approximation of Vµ within the space
S0 = {Φθ | θ ∈ Rd}, i.e., the subspace spanned by columns of Φ.
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Assumptions

Assumption (A1): The Markov chain {Xn} under the given
stationary policy is aperiodic and irreducible

Assumption (A2): The basis functions {φ(k), k = 1, . . . ,d} are
linearly independent. Further, d ≤ |S| and Φ has full rank.

Let dµ = (dµ(1), . . . ,dµ(|S|))T denote the stationary distribution
of {Xn} under the stationary policy µ. Let Dµ be a diagonal matrix
with diagonal entries dµ(i), i ∈ S.

For x ∈ R|S|, define ‖ x ‖D according to ‖ x ‖D= (xT Dµx)1/2.

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 30 / 79



The Projection Operator

Let Π be the projection operator from R|S| to S0 w.r.t. ‖ · ‖D. Thus
given Vµ ∈ R|S|, ΠVµ = arg min

V̂∈S0

‖ Vµ − V̂ ‖2
D. Since Φ has rank d ,

V̂ = Φθ for a unique θ ∈ Rd .

Thus ‖ Vµ − V̂ ‖2
D=‖ Vµ − Φθ ‖2

D= (Vµ − Φθ)T Dµ(Vµ − Φθ). Thus,
ΠVµ = ΦθV where θV = arg min

θ∈Rd
‖ Vµ − Φθ ‖2

D .

Setting ∇θ(‖ Vµ − Φθ ‖2
D) = 0, one gets

θV = (ΦT DµΦ)−1ΦT DµVµ. Thus

Π = Φ(ΦT DµΦ)−1ΦT DµVµ.
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The Projected Poisson Equation

Let ΠTµ be a composition of Π with Tµ. Then

Projected Poisson Equation:

Φθ = ΠTµ(Φθ).

Proposition 8: The mappings Tµ and ΠTµ are contractions of
modulus γ with respect to ‖ · ‖D i.e.,

‖ TµV − TµV̄ ‖D≤ γ ‖ V − V̄ ‖D ,

‖ ΠTµV − ΠTµV̄ ‖D≤ γ ‖ V − V̄ ‖D,

∀V , V̄ ∈ R|S|.
Proposition 9: Let Φθ∗ be the fixed point of ΠT . Then

‖ Vµ − Φθ∗ ‖D≤
1

√

1 − γ2
‖ Vµ − ΠVµ ‖D
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Numerical Solution of Projected Poisson Equation

Use value iteration: start from an initial estimate θ0 ∈ Rd and
iterate

Φθk+1 = ΠTµ(Φθk), k = 0,1, . . .

From Proposition 9, ΠTµ is a contraction. Hence Φθk → Φθ∗ as
k → ∞, where Φθ∗ is the unique fixed point of ΠTµ.

Note that one can write θk+1 = arg min
θ∈Rd

‖ Φθ − (Kµ + γPµΦθk) ‖2
D.

Thus set

∇θ(Φθ − Kµ − γPµΦθk )T Dµ(Φθ − Kµ − γPµΦθk)) = 0 i .e.,

ΦT Dµ(Φθk+1 − Kµ − γPµΦθk )T = 0.

Thus θk+1 = θk − (ΦT DµΦ)−1(Cθk − d), where
C = ΦT Dµ(I − γPµ)Φ and d = ΦT DµKµ.
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Positive Definiteness of ΦT Dµ(I − γPµ)Φ

Note that ‖ x ‖2
D= xT Dµx =‖ (Dµ)1/2x ‖2. Now for any function

V ∈ R|S|, we have

‖ PµV ‖2
D= V T Pµ

T DµPµV =
∑

i∈S

dµ(i)E2
µ[V (Xn+1) | Xn = i]

≤
∑

i∈S

dµ(i)Eµ[V 2(Xn+1) | Xn = i] =
∑

j∈S

dµ(j)V 2(j) =‖ V ‖2
D . Now,

V T DµγPµV = γV T (Dµ)1/2(Dµ)1/2PµV

≤ γ ‖ (Dµ)1/2V ‖‖ (Dµ)1/2PµV ‖

= γ ‖ V ‖D‖ PµV ‖D≤ γ ‖ V ‖2
D= γV T DµV .

Thus, Dµ(I − γPµ) is positive definite as

V T Dµ(I − γPµ)V ≤ (1 − γ) ‖ V ‖2
D> 0, ∀V 6= 0.

Hence ΦT Dµ(I − γPµ)Φ is positive definite as well since Φ is full
rank
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Stochastic Approximation

Objective: Solve the equation F (θ) = 0 when analytical form of F
is not known, however, noisy measurements F (θ(n)) + Mn+1 can
be obtained, where θ(n), n ≥ 0 are the input parameters and
Mn+1, n ≥ 0 are zero-mean i.i.d. random variables

F(.)
θ

F(

ξ

θ)+ξ

Figure: Noisy System with E [ξ] = 0

More generally, the noise random variables Mn+1, n ≥ 0 may
depend on the ‘system state’ and may not be i.i.d.
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The Robbins Monro Algorithm

Algorithm (Robbins and Monro [1951])

θ(n + 1) = θ(n) + a(n)(F (θ(n)) + Mn+1)

Algorithm closes the loop

F(.)

a(n)

(n)θ

Mn+1

Figure: Robbins-Monro Algorithm
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A More General Case

Assume noise enters as an argument of the objective i.e., the
available observations are f (θ(n), ηn) with i.i.d. ηn, n ≥ 0, where
E [f (θ, ηn) | θ] = F (θ)

Then

θ(n + 1) = θ(n) + a(n)f (θ(n), ηn)

= θ(n) + a(n)(F (θ(n)) + Mn+1),

where Mn+1 = f (θ(n), ηn) − F (θ(n)), n ≥ 0 is a martingale
difference sequence since E [Mn+1 | θ(n)] = 0, ∀n
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Convergence of the Algorithm

Step-size conditions: Assume
∑

n

a(n) = ∞;
∑

n

a(n)2 <∞

Show stability of the iterates i.e., that supn ‖ θ(n) ‖<∞ w.p.1, or
alternatively,

∑

n

a(n)(F (θ(n) + Mn+1) <∞ w.p.1.

Consider the associated ODE

θ̇(t) = F (θ(t))

Let K
△
= {θ | F (θ) = 0} denote the set of ‘asymptotically stable

equilibria’ of this ODE (assuming they exist)

One then argues that θ(n) → K as n → ∞ with probability one

Shalabh Bhatnagar (CSA, IISc) Reinforcement Learning: An Overview January 28, 2011 38 / 79



The Borkar and Meyn Stability Theorem

Borkar and Meyn [2000] analyze the recursion

Xn+1 = Xn + a(n)(h(Xn) + Mn+1),

under the following assumptions:

Assumption (B1): (i) h : Rd → Rd is Lipschitz continuous and

hc(x)
△
= h(cx)/c, c ≥ 1 satisfies hc → h∞, for some

h∞ : Rd → Rd uniformly on compacts.
(ii) The origin in Rd is a unique globally asymptotically stable
equilibrium for the ODE ẋ(t) = h∞(x(t)).
(iii) There is a unique globally asymptotically stable equilibrium
x∗ ∈ Rd for the ODE ẋ(t) = h(x(t)).
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B-M Stability (Contd)

Assumption (B2): {Mn,Gn,n ≥ 1} with Gn = σ(Xi ,Mi , i ≤ n) is a
martingale difference sequence. Further for some constant
C0 <∞ and any X0 ∈ Rd ,

E [‖ Mn+1 ‖2| Gn] ≤ C0(1+ ‖ Xn ‖2), n ≥ 0.

Assumption (B3): {a(n)} is a step-size sequence that satisfies
a(n) > 0 for all n and

∑

n

a(n) = ∞,
∑

n

a(n)2 <∞.

The Borkar-Meyn Theorem: Under (B1)-(B3), for any initial
condition X0 ∈ Rd , supn ‖ Xn ‖< ∞ almost surely (a.s.). Further,
Xn → x∗ a.s. as n → ∞.
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Temporal Difference Learning - Full State
Representation

Cost-to-go for a given stationary policy µ is

Vµ(sj) = E

[

∞
∑

m=0

γmk(sj+m, µ(sj+m), sj+m+1)

]

Hence Poisson equation becomes

Vµ(sj ) = E [k(sj , µ(sj), sj+1) + γVµ(sj+1)]

Alternatively, consider l-step Poisson equation

Vµ(sj ) = E

[

l
∑

m=0

γmk(sj+m, µ(sj+m), sj+m+1) + γ l+1Vµ(sj+l+1)

]

Since l is arbitrary, consider the following weighted average of
multi-step Poisson equations
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TD - FS (Contd.)

Suppose 0 ≤ λ < 1. Then

Vµ(sj) = (1 − λ)E [
∞
∑

l=0

λl(
l
∑

m=0

γmk(sj+m, µ(sj+m), sj+m+1)

+γ l+1Vµ(sj+l+1))]

Since (1 − λ)

∞
∑

l=m

λl = λm,

Vµ(sj) = E

[

(1 − λ)

∞
∑

m=0

γmk(sj+m, µ(sj+m), sj+m+1)

∞
∑

l=m

λl

]

+(1 − λ)E

[

∞
∑

l=0

λlγ l+1Vµ(sj+l+1)

]
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TD - FS (Contd.)

Upon simplification, one obtains

Vµ(sj) = E

[

∞
∑

m=0

λmγmdj+m

]

+ Vµ(sj)

where

dj+m = k(sj+m, µ(sj+m), sj+m+1) + γVµ(sj+m+1) − Vµ(sj+m)

Stochastic Approximation Version:

Jn+1(sj) = Jn(sj ) + a(n)
∞
∑

m=j

(γλ)m−j dm
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TD Learning with Function Approximation: TD(0)

As described in the case of projection based methods, let

Vµ(s) ≈ Ṽθ(s) = θTφs,

where φs = (φs(1), . . . , φs(d))T is a state-feature and
θ = (θ1, . . . , θd)T is the associated parameter

Note that
∇Ṽθ(s) = φs.

Define temporal difference term

δn = k(sn, µ(sn), sn+1) + γθT
n φsn+1 − θT

n φsn

The TD(0) Algorithm

θn+1 = θn + a(n)δnφsn , n ≥ 0
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Convergence of TD(0)

Tsitsiklis and Van Roy [1997] give the first proof of convergence

We present an alternative proof based on the B-M theorem

Theorem: TD(0) Convergence
Under Assumptions (A1), (A3) and (B3), {θn,n ≥ 0} governed by
TD(0) satisfy θn → θ∗ with probability one, where θ∗ is the unique
solution to the system of equations

ΦT DµΦθ∗ = ΦT DµTµ(Φθ∗). (1)

In particular,

θ∗ = −(ΦT Dµ(γP − I)Φ)−1ΦT DµKµ. (2)
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Proof of TD(0) Convergence

Proof of TD(0) Convergence: The ODE associated with TD(0)
recursion is the following:

θ̇(t) = ΦT Dµ(Tµ(Φθ(t)) − Φθ(t))
△
= h(θ(t)). (3)

Note that h(·) is Lipschitz continuous. Let h∞(θ)
△
= lim

r→∞

h(rθ)
r

Consider also the ODE

θ̇(t) = h∞(θ(t)) = ΦT Dµ(γPµ − I)Φθ(t). (4)

We have previously shown that ΦT Dµ(I − γPµ)Φ is positive
definite. Hence, ΦT Dµ(γPµ − I)Φ is negative definite.
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Proof of TD(0) Convergence (Contd.)

From the foregoing, the ODE θ̇ = h∞(θ) = ΦT Dµ(γPµ − I)Φθ has
the origin as its unique globally asymptotically stable equilibrium.
Next, define Mn, n ≥ 0 according to

Mn+1 = (k(sn, µ(sn), sn+1) + γθT
n φsn+1 − θT

n φsn)φsn

−E [(k(sn, µ(sn), sn+1) + γθT
n φsn+1 − θT

n φsn)φsn | G(n)],

where G(n) = σ(θr , sr , r ≤ n). It is easy to see that

E [‖ Mn+1 ‖2| G(n)] ≤ C1(1+ ‖ θn ‖2), n ≥ 0, (5)

for some constant 0 < C1 <∞.
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Proof of TD(0) Convergence (Contd.)

Finally, consider the system of equations

h(θ) = ΦT Dµ(Tµ(Φθ) − Φθ) = 0, (6)

that can be alternatively written as

ΦT DµKµ + ΦT Dµ(γPµ − I)Φθ = 0. (7)

Now since ΦT Dµ(γPµ − I)Φ is negative definite, it is of full rank
and invertible. Hence θ∗ (below) is the unique solution to (7)

θ∗ = −(ΦT Dµ(γPµ − I)Φ)−1ΦT DµKµ.

Assumptions (A1)-(A3) are now satisfied and the claim follows
from the Borkar-Meyn theorem. 2
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TD Learning with Function Approximation: TD(λ)

Sutton [1988], Tsitsiklis and Van Roy [1997]
As before, we let

Vµ(s) ≈ Vθ(s) = θTφs

Define eligibility trace

zn =
n
∑

k=0

(αλ)n−k∇Vθ(sk )

=

n
∑

k=0

(αλ)n−kφsk

The TD(λ) Algorithm: Let z−1 = 0 and update

θn+1 = θn + γnδnzn

zn+1 = γλzn + φsn+1
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Q-Value Iteration

Define the action-value function or Q-value function associated
with a stationary policy µ as

Qµ(i ,a) = Eµ {

∞
∑

t=0

γtk(Xt , µ(Xt),Xt+1) | X0 = i ,Z0 = a} (8)

Let Q∗(i ,a) = min
µ

Qµ(i ,a). Then

V ∗(i) = min
a∈A(i)

Q∗(i ,a)

Further, the Q-Bellman Equation holds.

Q∗(i ,a) =
∑

j

Pa
ij [k(i ,a, j) + γ min

a′∈A(j)
Q∗(j ,a′)] (9)

VI for Q-Bellman equation or QVI: Start from an initial Q0 and
iterate Qn+1(i ,a) =

∑

j

Pa
ij (k(i ,a, j) + γ min

a′∈A(j)
Qn(j ,a′))
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Q-learning with Full State Representation

Watkins and Dayan [1992]

It can be shown that Qn(i ,a) obtained according to QVI satisfy
Qn(i ,a) → Q∗(i ,a) ∀(i ,a), i ∈ S,a ∈ A(i) as n → ∞

Stochastic Approximation Version of QVI: Let ηn(i ,a), n ≥ 0 be
independent random variables (simulation samples) having the
common distribution Pa

i ·

Let c(n), n ≥ 0 satisfy (A3).

The QL-FS Algorithm: For every feasible state-action tuple (i ,a),
iterate

Qn+1(i ,a) = Qn(i ,a) + c(n)(k(i ,a, ηn(i ,a))

+γ min
v∈A(ηn(i ,a))

Qn(ηn(i ,a), v) − Qn(i ,a)) (10)

Convergence of QL-FS can be shown using the Borkar-Meyn
stability theorem.
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Q-learning with Function Approximation

Let Q(i ,a) ≈ θTσi ,a, where
σi,a: d̂-dimensional feature vector corresponding to (i, a), with
d̂ << |S × A(S)|. Here

S × A(S) = {(i, a) | i ∈ S, a ∈ A(i)}

θ is a tunable d̂-dimensional parameter

Q-learning with FA: Let {sn} denote a sample trajectory of states
of the MDP {Xn}. Also, let an be the action chosen at time n.
Then,

θn+1 = θn + c(n)σsn ,an(k(sn,an, sn+1)

+γ min
v∈A(sn+1)

θT
n σsn+1,v − θT

n σsn,an)

This algorithm suffers from the “off-policy” problem and hence it is
difficult to prove its convergence in general. However, see Melo
and Ribeiro [2007] for its convergence under some conditions.
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Finite Difference Gradient Approximation

Kiefer and Wolfowitz [1952]
Problem: Estimate ∇J(θ) when form of J : Rd → R is not known

∇J(θ) = (∇1J(θ), . . . ,∇d J(θ))T , where ∇iJ(θ) =
∂J(θ)

∂θi
,

i = 1, . . . ,d .
Finite Difference Balanced Estimate:

∇iJ(θ) ≈ (J(θ + δei) − J(θ − δei))/2δ, i = 1, . . . ,d

Requires 2d parallel simulations to estimate gradient once i.e.,
with parameters θ ± δei , i = 1, . . . ,d
Finite Difference Unbalanced Estimate:

∇iJ(θ) ≈ (J(θ + δei) − J(θ))/δ, i = 1, . . . ,d

Requires (d + 1) parallel simulations to estimate gradient once
i.e., with parameters θ, θ + δei , i = 1, . . . ,d
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Simultaneous Perturbation Gradient Estimates

Spall [1992]
Unbalanced SP Gradient Estimate:

∇iJ(θ) ≈ (J(θ + δ∆) − J(θ))/δ∆i , i = 1, . . . ,d

where ∆ = (∆1, . . . ,∆d )T is such that ∆i = ±1 w.p.1/2 and ∆i are
independent
Using Taylor’s argument, observe that

J(θ + δ∆) − J(θ)

δ∆i
≈ ∇iJ(θ) +

d
∑

j=1,j 6=i

∇jJ(θ)∆j

∆i
+ O(δ)

Thus E [(J(θ + δ∆) − J(θ))/(δ∆i ) | θ] ≈ ∇iJ(θ) + O(δ)

Balanced SP Gradient Estimate:

∇iJ(θ) ≈ (J(θ + δ∆) − J(θ − δ∆))/2δ∆i , i = 1, . . . ,d

where ∆, ∆1, . . . ,∆d are as above.
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Actor-Critic Algorithm with Full State Representation

Bhatnagar and Kumar [2004]

Assume A(i) are compact sets for each i ∈ S of type
N
∏

l=1

[Ľi , L̂i ].

Let ai = (a1
i , . . . ,a

N
i )T be action taken in state i

Run two parallel simulations with policies π1(n) and π2(n) at nth
update where π1(n) = (Pi(ai(n) − δ△i(n)), i ∈ S)T and
π2(n) = (Pi(ai(n) + δ△i(n)), i ∈ S)T .

Let {b(n)} and {c(n)} be two step-size schedules that satisfy

Assumption (C1):
∑

n

b(n) =
∑

n

c(n) = ∞,
∑

n

b(n)2,
∑

n

c(n)2 <∞ and c(n) = o(b(n))
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The Algorithm

Actor recursion:

aj
i(n + 1) = P j

i

(

aj
i(n) + c(n)

(

V 1
nL(i) − V 2

nL(i)

2δ△j
i(n)

))

,

where, for m = 0,1, . . . ,L − 1,

Critic recursions:

V 1
nL+m+1(i) = V 1

nL+m(i) + b(n)(k(i , π1
i (n), η1

nL+m(i , π1
i (n)))

+γV 1
nL+m(η1

nL+m(i , π1
i (n))) − V 1

nL+m(i)),

V 2
nL+m+1(i) = V 2

nL+m(i) + b(n)(K (i , π2
i (n), η2

nL+m(i , π2
i (n)))

+γV 2
nL+m(η2

nL+m(i , π2
i (n))) − V 2

nL+m(i)).
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Actor-Critic with FA for Average Cost

Bhatnagar et al. [2009]
Recall that for a given policy π (assume SRP),

λπ = lim
N→∞

1
N

E





N−1
∑

j=0

k(Xj , µj(Xj),Xj+1) | π





Further, for all i ∈ S,a ∈ A(i),

Qπ(i ,a) =
∞
∑

n=0

E [(k(Xn, π(Xn),Xn+1) − λπ) | X0 = i ,Z0 = a, π]

V π(i) =
∑

a∈A(i)

π(i ,a)Qπ(i ,a)

The Poisson Equation:

λπ + V π(i) =
∑

a∈A(i)

π(i ,a)
∑

j∈S

Pπ(i)
ij (k(i , π(i), j) + V π(j))
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Policy Gradient Methods

Let π(i ,a)
△
= πθ(i ,a) = Pr(Zn = a | Xn = i , θ).

Goal: Find
θ⋆ = arg min

θ
λπ.

Assumption (A3): πθ(i ,a) is continously differentiable in θ for any
i ∈ S, a ∈ A(i)

An Important Result (Marbach-Tsitsiklis 2001, Sutton et al 2000,
Baxter-Bartlett 2001): Under (A1) and (A3),

∇θλπ =
∑

i∈S

dπ(i)
∑

a∈A(i)

∇θπ(i ,a)Qπ(i ,a).
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Compatible Features

Suppose π(i ,a) =
exp(θTφia)

∑

b∈A(i) exp(θTφib)
, ∀i ∈ S, a ∈ A(i), where

each φia is a d̂ -dimensional feature vector. Note that

∂π(i ,a)

∂θ
= π(i ,a)(φia −

∑

b∈A(i)

π(i ,b)φib) = π(i ,a)ψia

Also note that
∑

a∈A(i)

π(i ,a)ψia = 0

In general, features ψia derived from π(i ,a) according to
ψia = ∇θ logπ(i ,a) are called compatible features.
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A Generalization of Policy Gradient Theorem

Generalization of PGT (Greensmith et al. [2004]):

∇θλπ =
∑

i∈S

dπ(i)
∑

a∈A(i)

∇θπ(i ,a)(Qπ(i ,a) − b(i)),

for any baseline b(i)

The Fisher information matrix (Amari [1998], Kakade [2002],
Peters et al. [2003])

G(θ) = Ei∼dπ,a∼π[∇θ logπ(i ,a)∇θ logπ(i ,a)T ]

=
∑

i∈S

dπ(i)
∑

a∈A(i)

π(i ,a)
∇θπ(i ,a)(∇θπ(i ,a))T

π(i ,a)π(i ,a)

=
∑

i∈S

dπ(i)
∑

a∈A(i)

π(i ,a)ψiaψ
T
ia = Ei∼dπ,a∼π[ψiaψ

T
ia].
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Results for a Fixed SRP π

Let Eπ(w) =
∑

i∈S

dπ(i)
∑

a∈A(i)

π(i ,a) [(wTψia − Qπ(i ,a) + b(i))2] be

the mean squared error of a parameterized (compatible)
approximation to Qπ(i ,a) and b(i) be an arbitrary baseline.

Lemma 1: For given θ,

w⋆ = arg min
w

Eπ(w) = G(θ)−1Ei∼dπ,a∼π[Qπ(i ,a)ψia]

Let b⋆(i) = arg min
b=(b(i),i∈S)

Eπ(w⋆).

Lemma 2: For any given policy π, the minimum variance baseline
b⋆(i) corresponds to the value function V π(i).

From Lemmas 1-2, w⋆Tψia serves as a least squares optimal
parametric representation for the advantage
Aπ(i ,a) = Qπ(i ,a) − V π(i ,a) as well, and not just Qπ(i ,a).
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Results for a Fixed SRP π (Contd.)

Let δ̄n = k(sn, π(sn), sn+1) − Jn + V̂sn+1 − V̂sn where E [V̂sn | sn, π]
= V π(sn), E [Jn | sn, π] = λπ. Then

Lemma 3: Under given policy π with actions an chosen according
to it, we have

E [δ̄n | sn,an] = Aπ(Xn,an) a.s.

Let φi , i ∈ S be a d -dimensional feature vector for state i . Let
V π(i) ≈ vTφi , where v is a d -dimensional weight vector. Now
suppose

δn
△
= k(sn, π(sn), sn+1) − Jn + vT

n φsn+1 − vT
n φsn ,

and

V̄ π(i)
△
=
∑

a∈A(i)

π(i ,a)
∑

j∈S

Pπ(i ,a)
ij (k(i , π(i ,a), j) − λπ + vπTφj) (11)
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Function Approximation Version of Policy Gradient
Theorem

Lemma 4 (Function Approximation Analog of PGT (Bhatnagar et
al. [2009])):

E [δnψsn,an | θ] = ∇θλπ +
∑

i∈S

dπ(i)(∇θV̄ π(i) −∇θvπTφi).

Corollary 1:
∑

i∈S

dπ(i)(V̄ π(i) − vπTφi) = 0.

In what follows, we also assume the following in addition to
(A1)-(A3) and (C1):

Assumption (A4): For every v ∈ Rd , Φv 6= e, where e is the
n-dimensional vector with all entries equal to one.
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Actor-Critic Algorithm with Function Approximation

Let ξ(n) = cb(n) for some c > 0. Then

Jn+1 = (1 − ξ(n))Jn + ξ(n)k(sn, π(sn), sn+1), (12)

δn = k(sn, π(sn), sn+1) − Jn+1 + vT
n φsn+1 − vT

n φsn , (13)

vn+1 = vn + b(n)δnφsn , (14)

θn+1 = θn − c(n)δnψXnZn . (15)

The recursions (12)-(14) correspond to TD(0) for long-run average
cost. Also, observe that the TD term δn is used in both actor and
critic recursions.
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An Application

Traffic Signal Control (Prashanth and Bhatnagar [2010])
AIM: Maximize traffic flow across intersections through adaptive
control of traffic lights

State: sn = (q1, . . . ,qN , t1, . . . , tN)
Action: An = {feasible sign configurations in state sn}
Cost:

k(sn, an) = r1 ∗ (
∑

i∈Ip r2 ∗ qi (n) +
∑

i /∈Ip s2 ∗ qi (n))

+ s1 ∗ (
∑

i∈Ip r2 ∗ ti (n) +
∑

i /∈Ip s2 ∗ ti(n)),
(16)

where ri , si ≥ 0 and ri + si = 1, i = 1, 2
We set r1 = s1 = 0.5 and r2 = 0.6, s2 = 0.4 in experiments
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Feature Selection

State-action features

σsn,an = (σq1(n), . . . , σqN(n), σt1(n), . . . , σtN (n),

σa1(n), . . . , σaM (n))
T

where

σqi (n) =







0 if qi(n) < L1
0.5 if L1 ≤ qi(n) ≤ L2
1 if qi(n) > L2

σti (n) =

{

0 if ti(n) ≤ T 1
1 if ti(n) > T 1

σai (n) = sign config chosen at junctioni

(17)
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Other Algorithms Implemented

Fixed Timing TLC
cycle periodically through feasible sign configurations

Self Organizing TLC (SOTL) (Cools et al. [2008])
switch lane to green if elapsed time crosses a threshold, provided
the # of vehicles crosses another threshold

Longest Queue TLC (LTLC)
switch lane to green if it has the longest queue

Q-learning with Full State Representation (QTLC-FS)
Q-learning with No Priority (QTLC-NP) (Abdulhai et al. [2003])

similar to QTLC-FS, but no prioritization of traffic
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A Two-Junction Corridor Setting (1)
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A 3 × 3–Grid Network (2)
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An Eight-Junction Corridor (3)
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Setting (1)

 0

 5

 10

 15

 20

 25

 30

 0  1000  2000  3000  4000  5000

D
el

ay

Cycles

QTLC-FA
QTLC-NP
QTLC-FS

Fixed10
Fixed20
Fixed30

SOTL

(a) Average junction waiting time

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 0  1000  2000  3000  4000  5000

N
um

be
r 

of
 R

oa
d 

U
se

rs

Cycles

QTLC-FA
QTLC-NP
QTLC-FS

Fixed10
Fixed20
Fixed30

SOTL

(b) Total Arrived Road Users

LTLC: traffic invariably entered a deadlock situation

It is interesting to note that QTLC-FA is better than both QTLC-FS
and QTLC-NP
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Setting (2)
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QTLC-FS and QTLC-NP are not even implementable on a
3x3-grid because the size of state-action space |S ×A(S)| ∼ 10101

On the other hand, in QTLC-FA, the number of features (i.e.,
clusters from the above state-action space over which the
algorithm works) is about 200
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Setting (3)
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Here also sizes of state-action spaces are large. Hence,
QTLC-FS and QTLC-NP are not implementable

QTLC-FA shows the best results as in previous settings
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Important Topics Not Covered in this Tutorial

Non-incremental methods (LSTD, LSPE etc.)

RL for constrained MDPs

Algorithms with Bellman error objectives

Algorithms with off-policy and nonlinear function approximation

Feature adaptation methods

POMDPs

· · ·
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