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An Introduction to Reinforcement Learning
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Figure: Agent-Environment Interaction
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Markov Decision Processes

@ Puterman [1994], Bertsekas [2005,2007]

@ A Markov Decision Process (MDP) is a controlled random process
{st} that depends on a control-valued sequence {a; } and satisfies
the controlled Markov property (below)

@ Let S denote the state space and A the action space. Assume S
and A are finite sets

@ In general, when state is i € S, feasible action space is A(i). Here
A = UiesAli)

@ Letk(st,at,St+1) be the cost incurred when state at time t is s,
action chosen is a; and the next state is S;1.
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Figure: State, Action and Single-Stage Cost
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The Controlled Markov Property

@ For allig,iy,...,s,s’,bg,by ..., ain appropriate sets,
, .
P(sty1 =S |st=s,a =a,...,S0 = Ip, a9 = bo)

=P(Sty1 =5 | st =s,a = a) = P&,

t St+1
a[
t—2 t=1 t t+1 t+2

Figure: The Controlled Markov Behaviour
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The Finite Horizon Problem

@ Here horizon length = N < oo

@ By an admissible policy =, we mean a sequence of functions
7w = {po, p1, .-, un—1} Such that each un : S — A with
pun(j) € A(j), J € S. Atinstant n, actions under = are selected
according to pn.

@ Let N be set of all admissible policies
@ Objective: Find a 7* € I that minimizes

N—-1
In(i) =E [ DK%, (%), Xj41) +h(Xn) [ Xo =i ,
j=0

where h(l) is the cost incurred when the ‘terminal state’ is | € S.
o LetJ*(i) = miHJW(i) = J=(i)
TE
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The Principle of Optimality

o Letn* = {ug, 13, ., 1y_q ) be an optimal policy. Suppose that
when using 7*, a state x; occurs at time i with positive probability.
Consider the subproblem — minimize from time i to N,

N—-1
E | k(X5 1(X), Xj12) + h(Xn) | Xi = %
j=i

Then the truncated policy {y, 1 4, ..., i _, } is optimal for this
subproblem.

@ Thus optimal policy can be constructed by going backwards in
time i.e., construct optimal policy for tail subproblem involving last
stage, then extending optimal policy to tail subproblem involving
last two stages and continuing till optimal policy for full problem is
constructed
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The Dynamic Programming Algorithm

@ For every initial state ip, the optimal cost J*(ip) of the basic
problem equals Jo(ip), given by the last step of the following
algorithm, that proceeds backwards in time from period N — 1 to

period 0O:
In(in) = h(in),
(|I) = U|r€nPI\r(1l|) E [k(X|, U|,X|+l) + 'J|+1(XI+1) ‘ X| = II]
 ueA( |,)Zpl1 (ks upJ) + di4a ()

vl=0,1,...,N—1,Vig,...,iy €S
@ If uf =y (iy) minimizes RHS above for each ij and I, then the
policy 7* = {yug, ..., x5 _4} is optimal
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Example — Control of a Queue

| : : o o
0 1 2 3 N-1 N

Figure: A Discrete Time Queue
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Example — The Setting

@ Assume arrivals/departures at discrete instants. Only one
customer can be served in a period. A customer can take multiple
periods for service

@ Two types of service — fast (u; with cost ¢; per period) and slow
(us with cost cg per period)

@ Let pym = probability of m arrivals in a period (m > 0)

@ With fast (slow) service, customer in service at beginning of period
will finish service w.p. g (gs) independent of number of periods a

customer has been in service for and the number of customers in
system. Assume g; > (s

@ Assume cost r(i) is incurred in each period for which i customers
are in system. Also, let R(i) be terminal cost if i customers are left
at time N in system
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Example — Transition Probabilities

Py =Py =p (=0.1....n—1)
Pon = Pon = Zmn Pm (1 = 1)

p' =pi*=0(G<i—1,i>0)
Py =qrpo (=i —1,i =0)

pi* =dspo( =i—1,i=0)

P’ = GPj_iv1 + (1 —ar)pj-i (i —1<j<n—1)
P = dsPj_ic1+ (1 - Qo)pji (i —1<j<n-—1)
Pi(n-1) = G Zm=n—i Pm + (1 = Gr)Pn-1-i

piu(Sﬂ—l) =0s Y men_i Pm + (1 = 04s)Pn_1-i

piunf =(1-9f) > men_i Pm

pilrj1s =(1—ds) > men_i Pm

© 6 6 ¢ 6 6 6 6 ¢ ¢ o
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Example — DP Algorithm

@ Single stage cost = r(i) + ¢; if fast service is used; else r(i) + cs if
slow service is used

°
(i) = R(),
(i) = min(cr +1 () + Y Py Iksa(i), s +r (i) + D pi*dra(i)),
ies jes

vk=1,....N—1,ieS
@ Fori = 0, no service is required. Thus A(0) = ¢, while
A(i) = {uf,us}, for all i > 0. Thus, Jy(0) = R(0) while
J(0) = r(0) + X jes P Jk+a(i) fork = 1,...,N — 1. Note here
that pgjf = pgjs (shown before) and in fact equals pg; i.e., no action
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The Infinite Horizon Discounted Cost Problem

@ Here N =

@ An admissible policy 7 is a sequence of functions
m = {po, p1, ..., } such that each u, : S — A and un(j) € A(j),
Vj € S. Atinstant n, actions under 7 are selected according to y.

@ Let 1 be set of all admissible policies

@ Objective: Find a «#* € I that minimizes the cost-to-go or the value
function

Z’Y (Xj5 1 (X5), Xj41) | Xo =i

© Let V(i) = minVx(i) = V(i)
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Stationary Policies

@ A stationary deterministic policy (SDP) = is one for which yj = i
foralli =0,1,2,.... Many times we just call x an SDP.

@ A stationary randomized policy ¢ can be characterized by
distributions ¢(i) = (¢(i,a),a € A(i)), i € S.

@ |t can be shown that the optimal policy (i.e., the one that attains
the minimum) is an SDP and so also an SRP

o LetT,T,: RISl — RISI be the maps
TI(i) = mln ZP (k(i,a,j) +13()),
Tu(0) = > PEO K, (i), §) +13()),
jes
ics.
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Finite Horizon Operators

@ LetT*I(i) = T(T*13(i)), TSI(i) = Tu(TX1(i)),i €S,k > 0.
Here T?J =T2J =J.
@ Note that
= min ZP (k(i,a,j) +~TI())

aeA (i)

= min (ZP (k(i aj)—l—’y mln ZPJ,(kJ u,1) ++3(1)))

acA(i)
_ . a . . . u . 2
= aggg)(zjj Pi(k(i,a.j) + min ZI: P (7K (@, u,1) +~23(1)))

@ The above corresponds to DP algorithm for a two-stage
~-discounted problem with initial state i, cost per stage k and

terminal cost function v2J.
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Monotonicity of Operators TK

@ Proposition 1: For any functions J,J' : S — R, J(i) < J'(i),Vi € S
implies T*J(i) < TKJ'(i) and T¥J(i) < TXKJ(i) foralli € S,
k=12, ...

@ Proof: Since TKJ can be viewed as a k-stage problem cost with
terminal cost function 4¥J, J < J’ implies TkJ < TkJ’. O

@ Proposition 2: Vk > 0,i € S,
T +re)(i) = TI(0) + A r,
k ; K1 k
T (3 +re)(i) =T () +7"r,

where e = (1,...,1)" is a |S|-dimensional unit vector.
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Convergence of DP

® We assume that |k(i,a,j)] <M < oo, foralli,j € S, a € A(i).
@ Proposition 3(a): For any bounded functionJ : S — R,

V*(i) = Nli_r}lOTNJ(i), Vies.

@ Proposition 3(b): For any SDP p and bounded J,
V(i) = lim TNJ(i), Vies,
N—oco

where V,, =V, with 7 = {u, i, ... }.
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The Bellman Equation

@ Proposition 4 — The Bellman equation: The optimal cost function
V* satisfies

V*(i) = min Pi(k(i,a,j) +9V*(j)), i€sS, or
acA(i) 4
V*¥=TV*

Further, V* is the unique solution of this equation within the class
of bounded functions.

@ Proposition 5 — The Poisson Equation: For every stationary policy
u, the associated cost function V, satisfies

V(i) —ZP”‘) (k(i, u(i),J) + V(). €S, or

V, =TV,
Further, V,, is the unique solution of this equation within the class
of bounded functions.
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The Optimality Condition

@ Proposition 6 — Necessary and Sufficient Condition for Optimality:
A stationary policy u is optimal if and only if u(i) attains the
minimum in the Bellman equation for eachi € S, i.e,, TV* =T, V*

@ Proof: Suppose TV* = T,V*. Then by the Bellman equation,
V =TV =T, V*

Now since the operator T,, has a unique fixed point V,, (Result 4),

we have V* =V, i.e., i is optimal

Suppose now that p is optimal. ThenV* =V,,. Hence V* =T, V*
(Proposition 5) = TV * (Proposition 4). a
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Numerical Approaches

@ Value lteration:
@ Recall that (Propositions 3(a)-3(b)) V*(i) = Iim TNJl(i) and
V(i) = lim T} J,(i) for any bounded Jl,Jz SR

@ Start with initial estimate Vg = J; and iterate
Vg1 =TV, e,

Vaia(i) = mmZ PR(k(i,a,]) +Va(i)

ThenV, — V*.

@ Similarly Wy, n > 0 with Wy = J, and Wy, 1 = T, W, satisfies
Wn — Vu
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Towards Policy Iteration

@ The following is a key result on which policy iteration is based.
@ Proposition 7: Let 4 and i be SDPs such that T;V, =TV, i.e,,

ZP“" (k(i, 2i).0) +V,(0))

= min (Z Pi(k(i.a.]) + 9V, (J))

Then V(i) <V, (i), Vi € S. Further, if 1« is not optimal, strict
inequality holds for at least one state i.
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The Policy Iteration Algorithm

@ (Initialize:) Start with a given stationary policy pg.

@ (Policy Evaluation:) Let K,,, = (3, Piﬁ‘”(i)k(i,un(i),j),i c9S)T,
Pu = [[Pﬁm(i)]]i,jes and V,,, = (V,,,(i),i € S)T. Solve the linear
system of equations V,,, = K, + 7P, V-

e Ifv,, =V, ,, terminate procedure, else go to next step.

@ (Policy Improvement:) Find a stationary policy pn41 such that

Z Pun+1(')(k @iy pnra(i),0) + V()

- P2(k Vv
ar&lg) J k(i a,0) + V(i)

@ Setn :=n+ 1 and go to the second step (PE) above.
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Long-run Average Cost Problems

O N=wx
@ Objective: Find a 7* € I that minimizes over all = € 1, the
average cost-per-stage starting from a given initial state i € S i.e.,

N-1
. . 1 .
Ar(i) = limsup S E > " K(Xj, (X)), Xj1) [ Xo =i

N—oo =0
@ Note that limit may not exist in general (hence we use limsup).

Limit can be shown to exist under any stationary policy p if the
underlying Markov chain {Xn} under that policy is ergodic.
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The Bellman Optimality Equation

@ Assume that {Xp} is ergodic under all stationary policies
@ Poisson Equation: For alli € S and given a stationary policy p,

N (i) = PEOK (L (i), 1) + i),
where h,(i) is the differential cost under p in state i defined as

o0
hu(i) = Ey, [Z(k(xl’ﬂ(xl)vxwl) — M) [ Xo = i]

1=0
@ Bellman Equation: For alli € S,

A" h() = min PE(K(.a.j) + ().

where \* is the optimal average cost and h(i) is the differential
cost in state i i.e., h(i) = min, h,(i)
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Relation between Average and Discounted Cost

@ Let \,(i) and V, ,(i), i € S denote the average and ~-discounted
costs from state i. Then

N—-1
. . 1 :
Au(i) = “an sup E [Z K(Xi, 1(X1), Xi41) | Xo = l]
oo 1=0

Et Ak (X, (X)), X Xo =i

— limsup lim > i=0 Y k( |,/;(_1|), 141) | Xo =]

N—oo 771 im0 '
@ Assuming an interchange of limits (see Bertsekas (2007) for a
rigorous argument),

Au(i) = lim limsup E[XiL Vlk(xlvl:l(_)il)’lxhrl) | Xo =]

771 N—oo =0 7

= AliLnl(l =)Vl
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Value lteration

@ VI-version 1:

@ Define operator T : RISl — RISI by Th = min, (K, + P,,h). Here
Kp=(jes Pf(i)k(i,u(i),j),i € S)T. Then one can show that
T'h/r - A\*asr — co.

@ VI-version 2 or relative value iteration:

@ Fix a state ig € S arbitrarily. Select a function hg : S — R. Iterate
overn > 0,

1) = min 37 PE(G.a.0) + i) - Pio)
i

Then it can be shown that h, (i) — A* as n — oc.
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Policy Iteration

@ Let ug be an estimate of the optimal policy. Fix a state ig € S
arbitrarily.

@ Policy Evaluation: In the nth stage, n > 0, solve Vi € S,

heniy = S PEO(K(i, (i), ) + b (§)) — b (io)

I

If h#n = h#n-1 terminate, else go to the next step.
@ Policy Improvement: Foralli € S,

(i) = arg min §Jj Pi(k(i,a,j) +h™ (7))

@ It can be shown that un, — p* for a stationary policy p* such that
h*" (ip) = A*.
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Limitations of Numerical Methods for Exact Schemes

@ For solving Bellman optimality equations (in various cases) using
numerical methods, one requires complete knowledge of transition
probabilities P;]" i, €S,ae€A(). (lack of model information)

@ The amount of computation required to solve Bellman equation
grows exponentially in the cardinality of the state and action

spaces. (curse of dimensionality)

@ Hence, one resorts to approaches that use a combination of
“simulation” and “feature-based approximations”
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Projection Based Methods — Policy Evaluation

@ Bertsekas [2010]
@ Consider the discounted cost case. Let

V,u(i) = V(i) = 07,
where ¢; = (¢i(1),...,¢i(d))T is a state-feature associated with
state i and § = (A4, ...,04)" is the associated parameter
o Let ® = [[¢]]]ics be the (/S| x d)-feature matrix. Let
Vo = (Vg(i),i € S)T. Then Vy = &0 = S 4(j)6;, where
#() = (¢i(j),i € S)T (the jth column of the ® matrix).

@ The aim is to find the best approximation of V,, within the space
Sp = {®0 | 6 € RY}, i.e., the subspace spanned by columns of ®.
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@ Assumption (Al): The Markov chain {X,} under the given
stationary policy is aperiodic and irreducible

@ Assumption (A2): The basis functions {¢(k),k =1,...,d} are
linearly independent. Further, d < |S| and ¢ has full rank.

o Letd” = (d*(1),...,d*(|S|))" denote the stationary distribution
of {Xn} under the stationary policy x. Let D* be a diagonal matrix
with diagonal entries d“(i), i € S.

@ For x € RISI, define || x ||p according to || x |[p= (xT D#x)/2.
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The Projection Operator

@ Let M be the projection operator from RIS/ to Sp w.rt. || - [[p. Thus
given V, € RISI, v, = arg min || V,, — V ||3. Since ¢ has rank d,
VESy

V = &4 for a unique 6 € RY.
@ Thus ||V, —V [B=|| V, — ®0 |3 = (V, — ®0)TD*(V, — ®0). Thus,
MV, = ®fy where gy = arg min || V,, — ¢ I13.
fER

@ Setting V(|| V,, — ®0 ||3) = 0, one gets
oy = (¢TD*®) 1o DHV,. Thus

N=&(e"D o) 1o DAV,
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The Projected Poisson Equation

@ Let [T, be a composition of N with T,,. Then
@ Projected Poisson Equation:

o6 = MT,,(®h).

@ Proposition 8: The mappings T, and T, are contractions of
modulus ~ with respectto || - ||p i.e.,

I TV =TuV o<~V =V [lp,
ATV = ATV o<y [V =V |,

W,V € RISI
@ Proposition 9: Let ®6* be the fixed point of MT. Then

_ A2
v1i—vy
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Numerical Solution of Projected Poisson Equation

@ Use value iteration: start from an initial estimate 6y ¢ RY and
iterate
b1 =NT,(P6k), k=0,1,...

@ From Proposition 9, T, is a contraction. Hence 6, — ®0* as
k — oo, where ®60* is the unique fixed point of MT,,.

@ Note that one can write 6y, ; = arg mirli | ®0 — (K, + P, o0) |13
PER

Thus set
Vo(0 — K, — vP, 6, )TD*(df — K, — yP,d0,)) =0 i.e.,

OTDH (PO 1 — K, — P, O)T = 0.

@ Thus 1 = O — (PTD#®)~1(CH —d), where
C = ®TDA(I —4P,)d and d = ®TDHK,,.

Shalabh Bhatnagar (CSA, 11Sc) Reinforcement Learning: An Overview January 28, 2011 33/79



Positive Definiteness of $TD#(l — P, )$

@ Note that || x 3= xTD#x =|| (D*)!/2x ||2. Now for any function
V € RISI, we have
IPLV [3=VTP.TD*P.V = "d*()EZIV (Xnt1) [ Xn = ]
ies
< D dFELV (Xnga) | X =] = - d ()VZ(G) =] V [[5 - Now,
IS JES
VTD#yP,V =~V T(D*)2(D")Y2p,V
<y [ (DHYAV || (D*)2P,V |
=7V ol PuV o<~ IV [I=~VTD*V.
@ Thus, D#(I —~P,) is positive definite as
VIDH(I =P,V < (1=9) |V |5>0, WV #0.

@ Hence ®TD#(I —~P,)® is positive definite as well since @ is full
rank
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Stochastic Approximation

@ Objective: Solve the equation F(¢) = 0 when analytical form of F
is not known, however, noisy measurements F(6(n)) + Mp,1 can
be obtained, where 6(n), n > 0 are the input parameters and
Mp+1, N > 0 are zero-mean i.i.d. random variables

. FO) @ F(8)+

\f

14

Figure: Noisy System with E[{] =0

@ More generally, the noise random variables M;;.1, n > 0 may
depend on the ‘system state’ and may not be i.i.d.
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The Robbins Monro Algorithm

@ Algorithm (Robbins and Monro [1951])
O(n+1)=6(n)+a(n)(F(A(n)) +Mni1)

@ Algorithm closes the loop

o D

M1 a(m)

o (n)

L= ]

Figure: Robbins-Monro Algorithm
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A More General Case

@ Assume noise enters as an argument of the objective i.e., the
available observations are f(6(n),nn) with i.i.d. n,, n > 0, where
E[f(6,mn) [ 6] = F(0)

@ Then

O(n+1) = 6(n)+a(n)f(d(n),nn)
= 6(n) +a(n)(F((n)) + Mns1),

where M1 = f(6(n),nn) — F(0(n)), n > O is a martingale
difference sequence since E[M,41 | 6(n)] =0, ¥n
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Convergence of the Algorithm

@ Step-size conditions: Assume
D a(n) =o0; Y a(n)’ <oo
n n

@ Show stability of the iterates i.e., that sup,, || (n) ||< co w.p.1, or
alternatively, > " a(n)(F (6(n) + Mn11) < co w.p.1.

n
@ Consider the associated ODE

0(t) = F(6(t))

LetK 2 {6 | F(#) = 0} denote the set of ‘asymptotically stable
equilibria’ of this ODE (assuming they exist)
@ One then argues that §(n) — K as n — oo with probability one
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The Borkar and Meyn Stability Theorem

@ Borkar and Meyn [2000] analyze the recursion
Xnt1 = Xn +a(n)(h(Xn) + Mn1),

under the following assumptions:

@ Assumption (B1): (i) h: RY — RY is Lipschitz continuous and
he(x) 2 h(cx)/c, ¢ > 1 satisfies he — h, for some
heo : RY — RY uniformly on compacts.
(i) The origin in RY is a unique globally asymptotically stable
equilibrium for the ODE x(t) = hoo(x(t)).
(iif) There is a unique globally asymptotically stable equilibrium
x* € RY for the ODE x(t) = h(x(t)).
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B-M Stability (Contd)

® Assumption (B2): {My, Gn,n > 1} with G, = o(X;,M;,i <n)isa
martingale difference sequence. Further for some constant
Cp < oo and any Xg € RY,

E[l| Mns1 [ Gn] < Co(1+ || Xn |I?), n > 0.

@ Assumption (B3): {a(n)} is a step-size sequence that satisfies
a(n) > O for all n and

Y a(n) =o0, Y a(n)?<oc.

n

@ The Borkar-Meyn Theorem: Under (B1)-(B3), for any initial
condition Xq € RY, sup,, || Xn ||< oo almost surely (a.s.). Further,
Xnh — X*a.s.asn — oo.
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Temporal Difference Learning - Full State

Representation

@ Cost-to-go for a given stationary policy p is

Vu(s)) =E [Z 'Ymk(sj—i-m’N(Sj—i-m)asj—i—m-i-l)]

m=0

@ Hence Poisson equation becomes

Vu(sj) = ELK(sj, 1(Sj), Sj+1) + YV u(Sj11)]

@ Alternatively, consider |-step Poisson equation

|
Vu(sj) = [Z'V K(Sj+ms 1(Sj+m); 51+m+1)+’)’ v (SH-H-l)]

m=0

@ Since | is arbitrary, consider the following weighted average of
multi-step Poisson equations
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TD - FS (Contd.)

@ Suppose 0 < A < 1. Then

0 |
Vu(sp) = (1 - )‘)E[z )‘I(Z YK (Sj+m, 4(Sj+m), Sj+m+1)
=0 m=0

7V (814110))]

@ Since (1 - X)) A =A™,

I=m

VM(SJ') =E

(1-2) Z YK (Sj+m; 4(Sj+m); Sj+m-+1) Z AI]

m=0 I=m

+(1 - \E [i A'fy'+1vu(s,-+|+1)]
=0
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TD - FS (Contd.)

@ Upon simplification, one obtains

Vu(s) =E [Z ATy |+ V()

m=0

where

ditm = K(Sj4m, £4(Sj+m), Sjrm+1) + YVpu(Sjtmr1) — Vu(Sjtm)

@ Stochastic Approximation Version:

In+1(s)) = In(sj) +a(n) Z(’V\)m_jdm

m=j
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TD Learning with Function Approximation: TD(0)

@ As described in the case of projection based methods, let
V,u(s) ~ \79(3) = on)Sa

where ¢s = (¢s(1),...,¢s(d))" is a state-feature and
6 = (01,...,04)" is the associated parameter

@ Note that _
VVG(S) = ¢s.
@ Define temporal difference term
on = K(sn, f(Sn), Sny1) + ')’HI ¢sn+1 - 91 Gsn

@ The TD(0) Algorithm

9n+1 = 9[’] + a(n)énd)sn, n Z 0
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Convergence of TD(0)

@ Tsitsiklis and Van Roy [1997] give the first proof of convergence
@ We present an alternative proof based on the B-M theorem
@ Theorem: TD(0) Convergence

Under Assumptions (A1), (A3) and (B3), {0,,n > 0} governed by
TD(O) satisfy 8, — 6* with probability one, where 6* is the unique
solution to the system of equations

®TD DY* = dTDHT,(06%). 1)
In particular,

0* = —(¢TDH(yP — 1)®) 1O DHK,,. (2)
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Proof of TD(0) Convergence

@ Proof of TD(0) Convergence: The ODE associated with TD(0)
recursion is the following:

() = OTDH(T,(®0(1)) — @0(t)) = h((1)). 3)
Note that h(-) is Lipschitz continuous. Let h(0) 2 r|l_)n;l<> @
Consider also the ODE
0(t) = hoo (6(1)) = ®TD¥ (7P, — 1)®0(1). (4)

@ We have previously shown that ®TD#(I — vP,)® is positive
definite. Hence, ®TD#(yP,, — 1)® is negative definite.
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Proof of TD(0) Convergence (Contd.)

@ From the foregoing, the ODE 6 = h(0) = " D#(yP,, — 1)®0 has
the origin as its unique globally asymptotically stable equilibrium.
Next, define M, n > 0 according to

Mnt1 = (K(Sn, #(Sn), Sn+1) + 791 ¢sn+1 - 91 bsn)Psn

—E[(K(Sn, 1(Sn), Sn+1) + V05 ds,,1 — b b5 )ds, | G(N)],

where G(n) = o(6;,sr,r < n). Itis easy to see that
Efl Mns1 [ G(n)] < Ca(1+ | 6n [%), n >0, (5)

for some constant 0 < C4 < oo.
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Proof of TD(0) Convergence (Contd.)

@ Finally, consider the system of equations
h(9) = ®TDH¥(T,(P0) — ¢0) =0, (6)
that can be alternatively written as
®TD#K, + ¢TD (P, — 1)d0 = 0. )

Now since ®TD#(yP,, — 1) is negative definite, it is of full rank
and invertible. Hence 6* (below) is the unique solution to (7)

0* = —(¢TD*(yP, — 1)) 1o DHK,,.

Assumptions (A1)-(A3) are now satisfied and the claim follows
from the Borkar-Meyn theorem. O
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TD Learning with Function Approximation: TD(\)

@ Sutton [1988], Tsitsiklis and Van Roy [1997]

@ As before, we let
Vu(s) ~ Vy(s) = o7 ¢s

@ Define eligibility trace

Zn =) (X" VVy(sk)
k=0

= Z(O‘)‘)n_kgésk

k=0
@ The TD(\) Algorithm: Let z_; = 0 and update

Onr1 = On + YnonZn
Zny1 = YAZn + s,y
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Q-Value lteration

@ Define the action-value function or Q-value function associated
with a stationary policy u as

QH(i,a) = Eu {D_ 'K(Xe, u(Xt), Xes1) | Xo =i,Zo =a}  (8)

t=0
o LetQ*(i,a) = minQ*(i,a). Then
w

V*(i) = min Q*(i,a)

acA(i)

Further, the Q-Bellman Equation holds.

Ia)—ZP[k(IaJ +7,min Q*(j.a) 9)

@ VI for Q-Bellman equatlon or QVI: Start from an initial Qg and
iterate Q41(i,a) ZP (ki &)+ m|n Qn(j a’))
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Q-learning with Full State Representation

@ Watkins and Dayan [1992]

@ |t can be shown that Q, (i, a) obtained according to QVI satisfy
Qn(i,a) — Q*(i,a) V(i,a),i € S,ac A(i)asn — o

@ Stochastic Approximation Version of QVI: Let nn(i,a), n > 0 be
independent random variables (simulation samples) having the
common distribution P?

@ Letc(n), n > 0 satisfy (A3).

@ The QL-FS Algorithm: For every feasible state-action tuple (i, a),
iterate

Qna(i, a) Qn(i,a) +c(n)(k(i,a,m(i,a))
+7 Qn(mn(i,a),v) — Qn(i,a)) (10)

veA(nn(l a))

@ Convergence of QL-FS can be shown using the Borkar-Meyn
stability theorem.
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Q-learning with Function Approximation

o LetQ(i,a) ~ 07 g; 5, where
o i, d-dimensional feature vector corresponding to (i, a), with
d << |S x A(S)|. Here

S xA(S)={(i,a) |i € S,aecA(i)}

@ fis a tunable d-dimensional parameter

@ Q-learning with FA: Let {s,} denote a sample trajectory of states
of the MDP {X,}. Also, let a, be the action chosen at time n.
Then,

On+1 = On +C(N)0os, a,(K(Sn, an, Sn+1)

. T T
+y min Opos v —0h0s,.a,)
VEA(Sn11)

@ This algorithm suffers from the “off-policy” problem and hence it is
difficult to prove its convergence in general. However, see Melo
and Ribeiro [2007] for its convergence under some conditions.
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Finite Difference Gradient Approximation

@ Kiefer and Wolfowitz [1952]
@ Problem: Estimate VJ(#) when form of J : RY — R is not known

© VI(0) = (V1I(0),...,Vad(0))T, where ViJ(0) = ag_gev),
i—1...d. |

@ Finite Difference Balanced Estimate:
Vid(0) ~ (I(0 + oej) —I(0 — dej)) /26,1 =1,...,d

Requires 2d parallel simulations to estimate gradient once i.e.,
with parameters 6 +dej, i =1,....d
@ Finite Difference Unbalanced Estimate:
Vid(0) ~ (I(0 + dej) —I(0))/6, i =1,....d
Requires (d + 1) parallel simulations to estimate gradient once
i.e., with parameters 6, 0 + dej, i =1,...,d
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Simultaneous Perturbation Gradient Estimates

@ Spall [1992]
@ Unbalanced SP Gradient Estimate:
Vid(0) = (I(0 4+ 6A) —3(0))/dAi, i =1,...,d

where A = (Aq,...,Aq)" is such that A; = +£1 w.p.1/2 and A; are
independent

@ Using Taylor's argument, observe that

J(9+5A)_J(0) %V,J(e)‘F : M+O(5)
YAV j:lz,j;éi !

Thus E [(J(0 + A) — I(0))/(d4) | 0] = V;I(6) + O(0)
@ Balanced SP Gradient Estimate:

Vid(0) =~ (I(0 +0A) —I(0 — 5A))/26A, i =1,....d
where A, Aq,..., Ay are as above.
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Actor-Critic Algorithm with Full State Representation

@ Bhatnagar and Kumar [2004]

N
@ Assume A(i) are compact sets for each i € S of type H[Ei, Li].
I=1
Leta; = (al,...,aMN)" be action taken in state i

@ Run two parallel simulations with policies 71(n) and 72(n) at nth
update where 7t(n) = (P;(aj(n) — dA;i(n)),i € S)T and
m2(n) = (Pi(ai(n) +dAi(n)),i € S)T.

@ Let {b(n)} and {c(n)} be two step-size schedules that satisfy

@ Assumption (C1): Zb(n) = Zc(n) =00
Z b(n Z 2 < coandc(n ) =o(b(n))
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The Algorithm

@ Actor recursion:
j i [ Vai () = Va ()
a(n+1) =P (ai(n) +c¢(n) ( 250(n) )

where, form=0,1,...,L —1,
@ Critic recursions:

VaLimia () = Valgm () + b()(K (i, 7 (n), g m (i, 7 ()

VoL em (oL pm (i (1)) = Vol em (D)),
Vitime1(D) = VaLim(i) + b)(K (i, 7 (n), 13 4m (i, 72 (N)))

VL em (L em (72 (1)) = ViLim(D)-
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Actor-Critic with FA for Average Cost

@ Bhatnagar et al. [2009]
@ Recall that for a given policy = (assume SRP),

N—oo N
j=0

N-—-1
1
Ar = Jim SE IZk Xi, (%), Xj 1) | 7 ]
Further, for alli € S,a € A(i),

Q7(i,a) = > E[(K(Xn, m(Xn), Xns1) = Ax) | Xo =1,Z0 = a,7]
n=0
V(i)=Y (i,a)Q"(i,a)
acA(i)
@ The Poisson Equation:
Ae V(@) = D wi,a) > Pk, (), 0) + V(i)

acA(i) jes
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Policy Gradient Methods

o Letn(i,a) 2 x%(i,a) = Pr(Zn = a| Xn = i,0).
@ Goal: Find
6* = arg mein A

@ Assumption (A3): 7%(i, a) is continously differentiable in ¢ for any
ieS,acA()

@ An Important Result (Marbach-Tsitsiklis 2001, Sutton et al 2000,
Baxter-Bartlett 2001): Under (A1) and (A3),

Vorr = > _d7(i) Y Ven(i,a)Q"(i,a).

ics acA())
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Compatible Features

Ty
@ Suppose 7(i,a) = eXp(0_dra) ,Vi €S, acA(), where

B 2_beA(i) exp(07 éip)
each ¢, is a d-dimensional feature vector. Note that

on(i,a)
a0

=n(i,a)(¢m — ) 7(i,b)gw) = n(i,a)¢n

beA(i)

Also note that > (i, a)¢a = 0
acA(i)
@ In general, features 1), derived from 7 (i, a) according to
ia = Vglogn(i,a) are called compatible features.
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A Generalization of Policy Gradient Theorem

@ Generalization of PGT (Greensmith et al. [2004]):

Vode = 3d7(0) 3 Vor(i,a)(Q7(i.a) - b(i))

ieS acA(i)

for any baseline b(i)

@ The Fisher information matrix (Amari [1998], Kakade [2002],
Peters et al. [2003])

G(0) = Ei~dr ax[Velogn(i,a)Vglogn(i,a)"]

=S d() Y (i a)YertalVor(a)!

w(i,a)r(i,a)

ies acA(i)
= Z d™( Z (i a)¢|a¢|a = Ejqr a~7r[¢la¢|a]
icS acA(i)
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Results for a Fixed SRP =

o Let&™(w)=> d™(i) Y =(i,a) (W ia — Q7(i,a) + b(i))?] be
ieS acA(i)
the mean squared error of a parameterized (compatible)

approximation to Q™ (i,a) and b(i) be an arbitrary baseline.
@ Lemma 1: For given 6,

w* = argmin €7 (w) = G(0) 'Eindr anr[Q7 (i, 3)tia]

@ Letb*(i) = EM(w™).
etbr(i) = argb(b(l)leS) W)

@ Lemma 2: For any given policy 7, the minimum variance baseline
b*(i) corresponds to the value function V7(i).

@ From Lemmas 1-2, w*T ¢, serves as a least squares optimal
parametric representation for the advantage
A"(i,a) = Q7(i,a) — V™(i,a) as well, and not just Q" (i, a).
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Results for a Fixed SRP 7 (Contd.)

@ Letdn = K(Sn,7(Sn),Snt1) — In + Vs,,, — Vs, where E[Vs, | sn, 7]
=V™(Sn), E[Jn | Sn,7] = Ar. Then
@ Lemma 3: Under given policy 7 with actions a,, chosen according
to it, we have
E[0n | Sn,an] = A™(Xn, an) a.s.

@ Let ¢, i € S be a d-dimensional feature vector for state i. Let
V7 (i) =~ vT ¢, where v is a d-dimensional weight vector. Now
suppose

A
on = K(Sn,7(Sn),Sn+1) —JIn + VrT Gspiy — VnT Dsp s

VT 2 S wia) > I k(i (i a))) — Ax+vTT ) (11)

acA(i) jes
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Function Approximation Version of Policy Gradient

Theorem

@ Lemma 4 (Function Approximation Analog of PGT (Bhatnagar et
al. [2009))):

E[Onthsn.an | 0] = Vorr + > d™(i)(VoV (i) — Vov™ @)
ies
@ Corollary 1:
>V~ v ) = 0.
ies
In what follows, we also assume the following in addition to
(A1)-(A3) and (C1):
@ Assumption (A4): For every v € RY, dv # e, where e is the
n-dimensional vector with all entries equal to one.
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Actor-Critic Algorithm with Function Approximation

@ Let¢(n) = cb(n) for some c > 0. Then

Jnt1 = (1 —&(n))In + E(N)K(Sn, 7(Sn), Sn+1), 12)
Sn = K(sn, m(Sn),Snt1) — Ins1 + Vo Gspay — VARCNS (13)
Vni1 = Vn + b(N)ongs,, (14)

Ons1 = b — C(N)onx,z,- (15)

@ The recursions (12)-(14) correspond to TD(0) for long-run average
cost. Also, observe that the TD term ¢, is used in both actor and
critic recursions.
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An Application

@ Traffic Signal Control (Prashanth and Bhatnagar [2010])
@ AIM: Maximize traffic flow across intersections through adaptive
control of traffic lights

o State: s, = (01,--.,0n,t1,.--,tN)
@ Action: A, = {feasible sign configurations in state sp}
@ Cost:

K(sn,an) = rox (Xigy, 2% di(N) + 21, S2 % di(N))

s (T 2 6(0) + Yoy 2 e (), O

@ whererj,si >0andri+si=1,i=1,2
@ Wesetr; =s; =0.5andr, =0.6,s, = 0.4 in experiments
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Feature Selection

@ State-action features

Osnan = (Tgu(n)- > Tqu(n)» Tta(n)s - - - » Tty (n)>
Tai(n)s - - aO'aM(n))
where
0 ifgi(n) <Ll
ogmy = 4 05 ifLL<g(n)<L2 (17)
1  ifgi(n)>L2

B 0 ift(n)<T1
M T U1 ift(n)>T1
o) = sign config chosen at junctian
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Other Algorithms Implemented

@ Fixed Timing TLC
@ cycle periodically through feasible sign configurations
@ Self Organizing TLC (SOTL) (Cools et al. [2008])

@ switch lane to green if elapsed time crosses a threshold, provided
the # of vehicles crosses another threshold

@ Longest Queue TLC (LTLC)
@ switch lane to green if it has the longest queue

@ Q-learning with Full State Representation (QTLC-FS)

@ Q-learning with No Priority (QTLC-NP) (Abdulhai et al. [2003])
@ similar to QTLC-FS, but no prioritization of traffic

Shalabh Bhatnagar (CSA, 11Sc) Reinforcement Learning: An Overview January 28, 2011 67179



A Two-Junction Corridor Setting (1)

@ Green Light District simulator - /home/prashanth/workspace/gld/app/corridor2.infra
File  Simulation  Statistics  Options  Help

2008 g QU 4 M »uim Hen g g

Succesfully loaded fhome/prashanthjworkspacefgldfappicerridor2.infra
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A 3 x 3—-Grid Network (2)

=] 'GreenllightiDistrictisimulator ) home/prashanthjworkspace/glad/maps/sxarsim D=
File  Simulation  Statistics _ Options  Help |
SHE 22— B AU <] > | n|m| High ] £ 2|
=
== % §‘]: _ % [ R
W “ B
. & )
-
= =
Succesfully loaded fhome/prashanthfworkspace/gld/maps/3x3.sim
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An Eight-Junction Corridor (3)

Green Light District simulator -'/home/prashanth/workspace/gldjmaps|/corridors.simi

=] = = = = DA
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Setting (1)

30 T 4000 ;
QTLC-FA —— QTLC-FA
QTLCNP —— QTLCNP
QTLCFS - QTLCFs
Fixed10 - 3500
25 Fixed20
Fixe
3000

§ 2500 |
101 B S S ; e
VVVVVVVVVVVVVVV 1000 |
5
(a) Average junction waiting time (b) Total Arrived Road Users

@ LTLC: traffic invariably entered a deadlock situation

@ Itis interesting to note that QTLC-FA is better than both QTLC-FS
and QTLC-NP
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Setting (2)

16000

STLCFA ——
Fixed10 ——--
Fixed20 ---—

xe
14000 [ Fixed30 4
Sop -

12000 [

10000 [

Delay
Number of Road Users
g8

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000

(c) Average junctiyon waiting time (d) Total Arrived Road Users

@ QTLC-FS and QTLC-NP are not even implementable on a
3x3-grid because the size of state-action space |S x A(S)| ~ 1001

@ On the other hand, in QTLC-FA, the number of features (i.e.,
clusters from the above state-action space over which the
algorithm works) is about 200
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Setting (3)

QTLC-FA
Fixed10
Fixed20

Number of Road Users
g

0 1000 2000 3000 4000 5000 0 1000 2000 3000 4000 5000
Cycles

(e) Average junction waiting time (f) Total Arrived chesoad Users

@ Here also sizes of state-action spaces are large. Hence,
QTLC-FS and QTLC-NP are not implementable

@ QTLC-FA shows the best results as in previous settings
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Important Topics Not Covered in this Tutorial

@ Non-incremental methods (LSTD, LSPE etc.)

@ RL for constrained MDPs

@ Algorithms with Bellman error objectives

@ Algorithms with off-policy and nonlinear function approximation
@ Feature adaptation methods

@ POMDPs

)
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