

Onkar Dabeer School of Technology and Computer Science Tata Institute of Fundamental Research Mumbai, India

- Introduction (15 mins)
 - Recommendation systems
 - The Collaborative Filtering component

- Introduction (15 mins)
 - Recommendation systems
 - The Collaborative Filtering component
- State of the Art (15 mins)
 - Neighborhood methods and latent factor models
 - Blend many schemes
 - Provably good principles?

- Introduction (15 mins)
 - Recommendation systems
 - The Collaborative Filtering component
- State of the Art (15 mins)
 - Neighborhood methods and latent factor models
 - Blend many schemes
 - Provably good principles?
- Two mathematical models (15 mins)
 - Estimation of rearranged smooth fields
 - Low-rank matrix completion

- Low-rank matrix completion (20 mins)
 - Candes, Recht (2008) links with CS
 - Keshavan, Oh, Montanari (2009) link with SVD
 - Many others

- Low-rank matrix completion (20 mins)
 - Candes, Recht (2008) links with CS
 - Keshavan, Oh, Montanari (2009) link with SVD
 - Many others
- Estimation of rearranged smooth processes (90 mins)
 - A "channel coding" result (Aditya, D, Dey, 2009)
 - Popularity Amongst Friends (PAF) algorithm
 - Empirical performance of PAF
 - BER analysis of PAF (Barman, D, 2010)

- Low-rank matrix completion (20 mins)
 - Candes, Recht (2008) links with CS
 - Keshavan, Oh, Montanari (2009) link with SVD
 - Many others
- Estimation of rearranged smooth processes (90 mins)
 - A "channel coding" result (Aditya, D, Dey, 2009)
 - Popularity Amongst Friends (PAF) algorithm
 - Empirical performance of PAF
 - BER analysis of PAF (Barman, D, 2010)
- Future directions (25 mins)

Introduction

Beyond Search

Travel

Events

Beyond Search

Events

Beyond Search

Events

Recommendations in Action

• Amazon

- People who bought this also bought...
- Google News: recommended stories
- iTunes Genius sidebar
- Netflix
 - Suggests movies using rating matrix
- Facebook, LinkedIn
 - Suggest connections
- RichRelevance recommendation engine
 - Disney Stores, Sears, Office Depot, etc.

• A new kind of estimation problem

- A new kind of estimation problem
- Massive data
 - iTunes: 10+ million songs, many more users
 - Scalability is paramount

- A new kind of estimation problem
- Massive data
 - iTunes: 10+ million songs, many more users
 - Scalability is paramount
- Lack of good statistical models
 - Rating subjective, context-dependent; spam

- A new kind of estimation problem
- Massive data
 - iTunes: 10+ million songs, many more users
 - Scalability is paramount
- Lack of good statistical models
 - Rating subjective, context-dependent; spam
- Sparse observations
 - Computational boon but makes model inference difficult

- A new kind of estimation problem
- Massive data
 - iTunes: 10+ million songs, many more users
 - Scalability is paramount
- Lack of good statistical models
 - Rating subjective, context-dependent; spam
- Sparse observations
 - Computational boon but makes model inference difficult
- Privacy issues

User Features

Location Gender Age Contacts

User Features

Location Gender Age Contacts

Item Features

Director Cast Year Genre

User Features Joint Features

Item Features

Location Gender Age Contacts

Time Ratings (Netflix) Clicks (Google News) Buy (Amazon)

Director Cast Year Genre

- Movielens
 - 3900 movies, 6040 users, 1 million ratings
 - 10681 movies, 71567 users, 10 million ratings

• Movielens

- 3900 movies, 6040 users, 1 million ratings
- 10681 movies, 71567 users, 10 million ratings
- Netflix
 - 17,770 movies, 480,189 users, about 100 million ratings, date of rating, movie names
 - Not online anymore but I have a copy

• Movielens

- 3900 movies, 6040 users, 1 million ratings
- 10681 movies, 71567 users, 10 million ratings
- Netflix
 - 17,770 movies, 480,189 users, about 100 million ratings, date of rating, movie names
 - Not online anymore but I have a copy
- Yahoo Music data
 - 136,000 songs, 1.8 million users, 717 million ratings
 - Genre, artist, album attributes

- Content based recommendations
 - Use similarity of item contents

- Content based recommendations
 - Use similarity of item contents
- Collaborative filtering (CF)
 - Exploit past user-item rating data
 - He likes what she likes

- Content based recommendations
 - Use similarity of item contents
- Collaborative filtering (CF)
 - Exploit past user-item rating data
 - He likes what she likes
- Many practical schemes use a blend of both
 - Collaborative filter with side-information

- Content based recommendations
 - Use similarity of item contents
- Collaborative filtering (CF)
 - Exploit past user-item rating data
 - He likes what she likes
- Many practical schemes use a blend of both
 - Collaborative filter with side-information
- In this tutorial: CF with no side-information

The Problem

Recommend items based on available ratings

State of the Art

(Review papers: Adomavicius et al, 2005; Su et al 2009)

Latent Variable Model

Latent Variable Model

Example: $X \sim m \times n$, $U \sim m \times r$, $V \sim r \times n$, X = UV, $\theta = (U, V)$

Factor Analysis: An SVD Inspired Algorithm

- Factorization: X = UV, X is $m \times n, U$ is $m \times r, V$ is $r \times n$, and $r \ll \min\{m, n\}$.
- Alternating Least-Squares: Initialize U, solve

$$\min_{V} \|X - UV\|_F^2.$$

Fix V, and solve for best U.

- For collaborative filtering: Evaluate error only over known entries, use gradient descent. (Variants in Koren, 2009; Keshavan, ISIT 2009).
- When does this method work?

- Identify a relevant "neighborhood" for any matrix entry
 - Related to clustering of users and/or items

- Identify a relevant "neighborhood" for any matrix entry
 - Related to clustering of users and/or items
- Predictor uses neighborhood data

- Identify a relevant "neighborhood" for any matrix entry
 - Related to clustering of users and/or items
- Predictor uses neighborhood data
- Parameters learnt from known data

- Identify a relevant "neighborhood" for any matrix entry
 - Related to clustering of users and/or items
- Predictor uses neighborhood data
- Parameters learnt from known data
- Example:
 - <u>Neighborhood</u>: K most similar items
 - <u>Predictor</u>: Affine map of average item ratings
 - Parameter estimation: Least-squares
 - A variant in Koren, 2009

• **Committee Methods**: Blend weak estimators

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters
 - The Netflix prize winner blends 100+ algorithms

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters
 - The Netflix prize winner blends 100+ algorithms
 - SVD inspired algorithms, neighborhood methods, exploiting time stamps, movie names

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters
 - The Netflix prize winner blends 100+ algorithms
 - SVD inspired algorithms, neighborhood methods, exploiting time stamps, movie names
 - Typical individual RMSE is 0.87-0.92 (on test data)

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters
 - The Netflix prize winner blends 100+ algorithms
 - SVD inspired algorithms, neighborhood methods, exploiting time stamps, movie names
 - Typical individual RMSE is 0.87-0.92 (on test data)
 - After blending, RMSE is about 0.85

- **Committee Methods**: Blend weak estimators
 - Strong empirical and theoretical backing
 - Popular in classification and regression
- Blending collaborative filters
 - The Netflix prize winner blends 100+ algorithms
 - SVD inspired algorithms, neighborhood methods, exploiting time stamps, movie names
 - Typical individual RMSE is 0.87-0.92 (on test data)
 - After blending, RMSE is about 0.85
 - RichRelevance blends about 40 algorithms

- Is a reduction of RMSE from 0.95 to 0.85 relevant on a scale of 1-5?
 - Why not probability of error?

- Is a reduction of RMSE from 0.95 to 0.85 relevant on a scale of 1-5?
 - Why not probability of error?
- Do we need so many non-trivial predictors?
 - Identify a most important subset
 - Provably good principles?

- Is a reduction of RMSE from 0.95 to 0.85 relevant on a scale of 1-5?
 - Why not probability of error?
- Do we need so many non-trivial predictors?
 - Identify a most important subset
 - Provably good principles?
- In this tutorial, we explore these questions
 - Empirical results on Movielens, Netflix
 - Theoretical results for two mathematical models

Rating Matrix Models

Movielens Rating Matrix

Low-Rank Rating Matrix

2	?	1	3
4	4	?	?
?	3	1	?
1	?	2	?

- SVD inspired algorithms
 - Koren el al (2009) and earlier
- Low-rank matrix completion
 - Candes, Recht (2008)
 - Keshavan et al (2009)
 - Neka et al (2009)
 - Lee and Bresler (2009)

- From data compression:
 - Smoothness corresponds to fast decay of coefficients in a wavelet/DCT expansion
 - Fast decay implies a sparse set of coefficients capture most signal energy

- From data compression:
 - Smoothness corresponds to fast decay of coefficients in a wavelet/DCT expansion
 - Fast decay implies a sparse set of coefficients capture most signal energy
- Hence smoothness implies approximation with low-rank structure

- From data compression:
 - Smoothness corresponds to fast decay of coefficients in a wavelet/DCT expansion
 - Fast decay implies a sparse set of coefficients capture most signal energy
- Hence smoothness implies approximation with low-rank structure
- Row-column permutations preserve rank

- From data compression:
 - Smoothness corresponds to fast decay of coefficients in a wavelet/DCT expansion
 - Fast decay implies a sparse set of coefficients capture most signal energy
- Hence smoothness implies approximation with low-rank structure
- Row-column permutations preserve rank
- Hence a low-rank approximation makes sense

The Relationship: Differences

The Relationship: Differences

- We prefer finite alphabet
 - Real data has finite alphabet
 - Allows consideration of probability of error in a recommendation (more relevant than RMSE?)
 - What is "smoothness"?
The Relationship: Differences

- We prefer finite alphabet
 - Real data has finite alphabet
 - Allows consideration of probability of error in a recommendation (more relevant than RMSE?)
 - What is "smoothness"?
- Lot of noise not just stability analysis
 - User noise
 - Modeling noise
 - Better describes real data?
 - Keshavan et al (2010) also consider noise in lowrank model

Low-Rank Matrix Completion with In-Coherent Singular Vectors

Spectral Norm Minimization

- S =Set of locations at which X is known
- The problem:

$$\min_{Y:Y_{i,j}=X_{i,j},(i,j)\in S} \operatorname{rank}(Y)$$

- $\operatorname{rank}(Y) = \|\boldsymbol{\sigma}(Y)\|_{\ell_0} = \#$ non-zero singular values
- Relaxation (Candes, Recht, 2008):

$$\min_{Y:Y_{i,j}=X_{i,j},(i,j)\in S} \|\boldsymbol{\sigma}(Y)\|_{\ell_1}$$

Can be cast as a semi-definite program.

• Poor scalability, but with enough samples, original matrix can be recovered

- Inserting zeros:
 - Replace missing entries by 0
 - If a row/column has 'many' samples, then make it all 0

- Inserting zeros:
 - Replace missing entries by 0
 - If a row/column has 'many' samples, then make it all 0
- Find a low-rank approximation initialization for next step

- Inserting zeros:
 - Replace missing entries by 0
 - If a row/column has 'many' samples, then make it all 0
- Find a low-rank approximation initialization for next step
- Insert back pruned rows/columns

- Inserting zeros:
 - Replace missing entries by 0
 - If a row/column has 'many' samples, then make it all 0
- Find a low-rank approximation initialization for next step
- Insert back pruned rows/columns
- Consider error restricted to known entries and apply gradient descent

- Inserting zeros:
 - Replace missing entries by 0
 - If a row/column has 'many' samples, then make it all 0
- Find a low-rank approximation initialization for next step
- Insert back pruned rows/columns
- Consider error restricted to known entries and apply gradient descent
- Faster than Candes-Recht with similar theoretical guarantee (and MSE bound)

- Koren, Bell, Volinsky (IEEE Computer, 2009)
 - No theoretical guarantee

- Koren, Bell, Volinsky (IEEE Computer, 2009)
 - No theoretical guarantee
- ISIT 2009, 2010 special sessions

- Koren, Bell, Volinsky (IEEE Computer, 2009)
 - No theoretical guarantee
- ISIT 2009, 2010 special sessions
- For example: Lee and Bresler, ISIT 2009
 - Linear measurements
 - Close link to matching pursuits (best sparse representation of signals)
 - No theoretical guarantee

Estimating Rearranged 'Smooth' Processes

- Underlying true matrix is low-rank
 - Recall link between 'smoothness' and low-rank

- Underlying true matrix is low-rank
 - Recall link between 'smoothness' and low-rank
- Incorporates user and modeling noise
 - Candes and Plan (2009) consider small noise for stability analysis

- Underlying true matrix is low-rank
 - Recall link between 'smoothness' and low-rank
- Incorporates user and modeling noise
 - Candes and Plan (2009) consider small noise for stability analysis
- Finite alphabet
 - Hence asymptotic error free recovery possible even in presence of noise
 - Probability of error in recovering entire matrix
 - Bit error rate (BER)

- Underlying true block constant matrix
 - Cluster size determines degrees of freedom

- Underlying true block constant matrix
 - Cluster size determines degrees of freedom
- Clusters not known, but deterministic

- Underlying true block constant matrix
 - Cluster size determines degrees of freedom
- Clusters not known, but deterministic
- Errors: i.i.d., binary symmetric channel, represent noisy user behavior

- Underlying true block constant matrix
 - Cluster size determines degrees of freedom
- Clusters not known, but deterministic
- Errors: i.i.d., binary symmetric channel, represent noisy user behavior
- Erasures: i.i.d., model missing data

- Underlying true block constant matrix
 - Cluster size determines degrees of freedom
- Clusters not known, but deterministic
- Errors: i.i.d., binary symmetric channel, represent noisy user behavior
- Erasures: i.i.d., model missing data
- **Diverse opinions:** i.i.d. Bernoulli(1/2) ratings across clusters
 - No information from self data; must use collaborative filtering

Some Assumptions

- Matrix: $m \times n$, $m = \Theta(n)$
- Erasure probability $\epsilon = 1 \frac{c}{n^{\alpha}}, \quad 0 \leq \alpha \leq 1$
 - $\alpha < 1/2$: Near-quadratic regime $\alpha > 1/2$: Near-linear regime
- All clusters of same order
 - Number of clusters = $\Omega(\log n)$ to ensure P(cluster merging) is vanishing

(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

1

(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

1

 α

 $\log(\text{cluster size})$ For cluster + majority $P_e \rightarrow 0$ $\Theta(\alpha \log n + \log \log n)$ 0.5

(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

1

(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

1

 α

(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

- Our clustering algo:
 - Similarity = #commonly agreed entries/# common entries
 - Threshold similarities

- Our clustering algo:
 - Similarity = #commonly agreed entries/# common entries
 - Threshold similarities
- Good for analysis

- Our clustering algo:
 - Similarity = #commonly agreed entries/# common entries
 - Threshold similarities
- Good for analysis
- But bad for implementation as may not lead to clusters on finite data

- Our clustering algo:
 - Similarity = #commonly agreed entries/# common entries
 - Threshold similarities
- Good for analysis
- But bad for implementation as may not lead to clusters on finite data
- Need a modification

- Our clustering algo:
 - Similarity = #commonly agreed entries/# common entries
 - Threshold similarities
- Good for analysis
- But bad for implementation as may not lead to clusters on finite data
- Need a modification
- Also clustering both rows and columns is computationally intensive

The Popularity Amongst Friends (PAF) Algorithm

- For user 1, find top K similar users
- Similarity = # agreements in available ratings
- Recommend an unseen item that is most popular amongst these K users

- For user 1, find top K similar users
- Similarity = # agreements in available ratings
- Recommend an unseen item that is most popular amongst these K users
- Motivated by practice (example: Amazon)

- For user 1, find top K similar users
- Similarity = # agreements in available ratings
- Recommend an unseen item that is most popular amongst these K users
- Motivated by practice (example: Amazon)
- Not matrix completion

- For user 1, find top K similar users
- Similarity = # agreements in available ratings
- Recommend an unseen item that is most popular amongst these K users
- Motivated by practice (example: Amazon)
- Not matrix completion
- Low complexity
 - User node degree << Total number of users
 - Simple updates

• RMSE - popular since Netflix prize

- RMSE popular since Netflix prize
- MAE popular in earlier works

- RMSE popular since Netflix prize
- MAE popular in earlier works
- Probability that entire matrix is recovered
 - Candes, Recht (2008) and others
 - Aditya, D, Dey (2009)

- RMSE popular since Netflix prize
- MAE popular in earlier works
- Probability that entire matrix is recovered
 - Candes, Recht (2008) and others
 - Aditya, D, Dey (2009)
- Our focus is on bit error rate (BER)
 - Probability that a recommendation made is incorrect

Empirical Performance (Movielens and Netflix)

- Rating quantization
 - 4,5 mapped to 1 (yes), 1-3 mapped to 0 (no)

- Rating quantization
 - 4,5 mapped to 1 (yes), 1-3 mapped to 0 (no)
- Hide 30% of data per user; can compute metrics only when recommended item is in the hidden list

- Rating quantization
 - 4,5 mapped to 1 (yes), 1-3 mapped to 0 (no)
- Hide 30% of data per user; can compute metrics only when recommended item is in the hidden list
- Comparison with OptSpace (Keshavan et al, 2008)
 - Representative of matrix algorithms
 - Evaluated only on items recommended by local algorithm
 - Unquantized input; output quantized for BER

Empirical Performance

Movielens

	BER	MAE	RMSE	
PAF	0.103	0.627	0.748	
OptSpace	0.108	0.581	0.733	

Naive Estimate: For Local Algorithm, to compute RMSE, MAE 1 is mapped to 4.5

Empirical Performance

Movielens

	BER	MAE	RMSE
PAF	0.103	0.627	0.748
OptSpace	0.108	0.581	0.733

Naive Estimate: For Local Algorithm, to compute RMSE, MAE 1 is mapped to 4.5

Snapshot of Netflix (2000)

	BER	MAE	RMSE
PAF	0.18	0.742	0.942
OptSpace	0.19	0.590	0.742

Netflix has higher percentage of low ratings

Empirical Performance (Contd.)

Movielens After Removing Popular Movies (those with 60% or more 1's)

	BER	MAE	RMSE
PAF	0.335	0.709	1.010
OptSpace	0.327	0.718	0.901

Empirical Performance (Contd.)

• PAF competitive for BER

- PAF competitive for BER
- Are MAE, RMSE relevant?
 - Scale 1-5, RMSE 0.7+ poor confidence intervals
 - Noisy data and difficult to squeeze out more than 1 bit information

- PAF competitive for BER
- Are MAE, RMSE relevant?
 - Scale 1-5, RMSE 0.7+ poor confidence intervals
 - Noisy data and difficult to squeeze out more than 1 bit information
- 2-10 times faster than OptSpace
 - Also amenable to recursive update

- PAF competitive for BER
- Are MAE, RMSE relevant?
 - Scale 1-5, RMSE 0.7+ poor confidence intervals
 - Noisy data and difficult to squeeze out more than 1 bit information
- 2-10 times faster than OptSpace
 - Also amenable to recursive update
- Any provably good properties?

BER Analysis of PAF

Asymptotic BER of PAF $\log(\text{cluster size})$

1

Asymptotic BER of PAF

lpha

Asymptotic BER of PAF $\log(\text{cluster size})$ For K = # friends BER=0 $2\alpha \log n$ $2(\alpha - \gamma) \log n$ -BER $p^{\lfloor \frac{1}{\gamma} \rfloor}$ $= \frac{1}{p^{\lfloor \frac{1}{\gamma} \rfloor} + (1-p)^{\lfloor \frac{1}{\gamma} \rfloor}}$ 1

 α

Asymptotic BER of PAF $\log(\text{cluster size})$ For K = # friends BER=0 $2\alpha \log n$ PAF fails even with no noise BER=1/2 $2(\alpha - \gamma) \log n$ -BER $p^{\lfloor \frac{1}{\gamma} \rfloor}$ $= \frac{1}{p^{\lfloor \frac{1}{\gamma} \rfloor} + (1-p)^{\lfloor \frac{1}{\gamma} \rfloor}}$ 1

 α
- Phase 1: Large cluster, near-quadratic samples, BER=0
 - Top neighbors good, large cluster averages out noise

- Phase 1: Large cluster, near-quadratic samples, BER=0
 - Top neighbors good, large cluster averages out noise
- Phase 2: Small cluster, near-quadratic samples, 0 < BER < 1/2
 - Top neighbors good
 - But cluster too small to average out noise
 - Optimum list size = # friends

- Phase 1: Large cluster, near-quadratic samples, BER=0
 - Top neighbors good, large cluster averages out noise
- Phase 2: Small cluster, near-quadratic samples, 0 < BER < 1/2
 - Top neighbors good
 - But cluster too small to average out noise
 - Optimum list size = # friends
- Phase 3: Near-linear samples
 - Most neighbors picked are bad

Where Does Real Data Live?

The Movielens Matrix

The Movielens Matrix

The Movielens Matrix

Degrees of Freedom

• PAF algorithm is scalable and competitive

- PAF algorithm is scalable and competitive
- Provably good in near-quadratic regime
 - BER bounded away from 1/2

- PAF algorithm is scalable and competitive
- Provably good in near-quadratic regime
 - BER bounded away from 1/2
- Near-linear regime: Blend side-information

- PAF algorithm is scalable and competitive
- Provably good in near-quadratic regime
 - BER bounded away from 1/2
- Near-linear regime: Blend side-information
- Refining our simple model
 - Sampling account for heavy tails
 - Incorporate item correlations
 - Rearranged general 'smooth' processes?
 - Incorporating side information?

Proof Outline

• Analyze probability of error in recovering entire matrix as matrix size grows

- Analyze probability of error in recovering entire matrix as matrix size grows
- To show that if cluster size is small, then w.h.p. no scheme can yield perfect recovery
 - In fact, a strong converse: probability of error approaches 1

- Analyze probability of error in recovering entire matrix as matrix size grows
- To show that if cluster size is small, then w.h.p. no scheme can yield perfect recovery
 - In fact, a strong converse: probability of error approaches 1
- Consider oracle that tells us the clusters

- Analyze probability of error in recovering entire matrix as matrix size grows
- To show that if cluster size is small, then w.h.p. no scheme can yield perfect recovery
 - In fact, a strong converse: probability of error approaches 1
- Consider oracle that tells us the clusters
- Once the clusters are known, the MAP decoder in each block is just majority decoder

Known Clusters

- Let $p_1 = \epsilon + 2(1 \epsilon)\sqrt{p(1 p)}$.
- If $s_*(\mathbf{X}) \ge \frac{\ln(mn)}{\ln(1/p_1)}$

then $P_{e|\mathcal{A},\mathcal{B}}(\mathbf{X}) \to 0$.

• If

$$s^*(\mathbf{X}) \le \frac{(1-\delta)\ln(mn)}{\ln(1/p_1)}$$
 for some $\delta > 0$,

then $P_{e|\mathcal{A},\mathcal{B}}(\mathbf{X}) \to 1$.

Known Clusters

• Let $p_1 = \epsilon + 2(1 - \epsilon)\sqrt{p(1 - p)}$.

$$s_*(\mathbf{X}) \ge \frac{\ln(mn)}{\ln(1/p_1)} \qquad \sim Cn^{\alpha} \ln(n)$$

for $\epsilon = 1 - \frac{c}{n^{\alpha}}$

then $P_{e|\mathcal{A},\mathcal{B}}(\mathbf{X}) \to 0$.

• If

• If

$$s^*(\mathbf{X}) \le \frac{(1-\delta)\ln(mn)}{\ln(1/p_1)}$$
 for some $\delta > 0$,

then $P_{e|\mathcal{A},\mathcal{B}}(\mathbf{X}) \to 1$.

• First cluster rows and columns, and then assuming correct clustering, apply majority decoding

• First cluster rows and columns, and then assuming correct clustering, apply majority decoding

• Row/Column Clustering:

- For every pair of rows, find the Hamming distance over commonly sampled positions
- Compare with threshold to decide whether rows are in same cluster or not
- Error in clustering if any pair is misclassified

• First cluster rows and columns, and then assuming correct clustering, apply majority decoding

• Row/Column Clustering:

- For every pair of rows, find the Hamming distance over commonly sampled positions
- Compare with threshold to decide whether rows are in same cluster or not
- Error in clustering if any pair is misclassified
- Analysis: Use concentration of metric around its mean to choose threshold

The Clustering Algorithm

• For rows i, j with N_{ij} commonly sampled positions

$$d_{ij} = \frac{1}{N_{ij}} \sum_{k=1}^{n} 1\left(Y_{ik} \neq e, Y_{jk} \neq e\right) 1\left(Y_{ik} \neq Y_{jk}\right).$$

- Choose threshold $d_0 \in (2p_0(1-p_0), 1/2).$
- If $d_{ij} < d_0$, declare i, j in same cluster, else declare them to be in different clusters.

Clustering Error - Simpler Case

• Simplifications:

- Square matrix, uniform cluster size, ϵ fixed
- Suppose all channel parameters are known.
- Normalize metric by n instead of N_{ij} .
- Hypothesis A Rows in same cluster: Conditioned on X, d_{ij} is avg. of i.i.d. Bernoulli variables with mean μ.
- Hypothesis B Rows in different cluster: Conditioned on X, d_{ij} is avg. of two groups of i.i.d. random variables and has mean $\mu + \delta s_{ij}/n$, $s_{ij} =$ Hamming distance between rows.

Clustering Error - Simpler Case (Contd.)

- Let t=# of clusters, $n_0=$ size of cluster
- $s_{i,j}$ is $n_0 \times \text{Binomial}(t, 1/2)$; concentrates if $t \to \infty$
- Gap in means: $\delta/2$; pick d_0 in this gap.
- Errors:
 - Hypothesis A is true: $P(\operatorname{error}|A) = O(\exp(-cn)).$
 - Hypothesis B is true: $P(\text{error}|B) = O(\exp(-ct))$.
- Clustering error: By union bound, diminishing provided $t > C \ln(n)$; otherwise does not depend on n_0 .

Main Result (Illustration)

BER Analysis of PAF

Recall: Asymptotic BER of PAF

 $\log(\text{cluster size})$

1

Recall: Asymptotic BER of PAF

lpha

1

Recall: Asymptotic BER of PAF

lpha

1
Recall: Asymptotic BER of PAF

Phase 2: Finding Good Neighbors

• Similarity between row 1 and another row in its cluster:

Binomial
$$(n, c^2[p^2 + (1-p)^2]n^{-2\alpha})$$

• Similarity between row 1 and a row in a different cluster:

Binomial
$$\left(n, c^2 n^{-2\alpha}/2\right)$$

- Above marginals concentrate for $\alpha < 1/2$. So we hope to find good neighbors.
- Detailed calculations (accounting for dependence) confirm the hope.

Phase 2: Filtering Noise

- K = # friends w.h.p. all neighbors are good
- Most popular column: w.h.p. # 1's = $\lfloor 1/\gamma \rfloor$, and # 0's = 0
 - For an arbitrary column, $E[\#\text{samples}] = \Theta(1/n^{\gamma})$
- Aposteriori probability:

$$P(X(1,j_*) = 0 | Y_K(:,j_*)) = \frac{p^{\#1-\#0}}{p^{\#1-\#0} + (1-p)^{\#1-\#0}}$$

- Most neighbors picked by PAF are bad
 - Even the clustering algorithm we considered fails

- Most neighbors picked by PAF are bad
 - Even the clustering algorithm we considered fails
- Similarity metrics do not concentrate
 - Probability that a row is not sampled is non-zero
 - Probability that distinct part of bad candidates is never sampled is non-zero

- Most neighbors picked by PAF are bad
 - Even the clustering algorithm we considered fails
- Similarity metrics do not concentrate
 - Probability that a row is not sampled is non-zero
 - Probability that distinct part of bad candidates is never sampled is non-zero
- Number of clusters increasing to infinity implies # good candidates/(# bad candidates) approaches zero

- Most neighbors picked by PAF are bad
 - Even the clustering algorithm we considered fails
- Similarity metrics do not concentrate
 - Probability that a row is not sampled is non-zero
 - Probability that distinct part of bad candidates is never sampled is non-zero
- Number of clusters increasing to infinity implies # good candidates/(# bad candidates) approaches zero
- A problem for any pairwise scheme

Future Directions

- PAF exploits correlations only amongst users
 - Correlation amongst items?

- PAF exploits correlations only amongst users
 - Correlation amongst items?
- Gap w.r.t. optimal threshold for recovering entire matrix

- PAF exploits correlations only amongst users
 - Correlation amongst items?
- Gap w.r.t. optimal threshold for recovering entire matrix
- How do we modify PAF?
 - For an item, find most similar items
 - Given top few recommendations by PAF, how do we use the list of related items to pick a recommendation?
 - Analysis and empirical evaluation

- PAF exploits correlations only amongst users
 - Correlation amongst items?
- Gap w.r.t. optimal threshold for recovering entire matrix
- How do we modify PAF?
 - For an item, find most similar items
 - Given top few recommendations by PAF, how do we use the list of related items to pick a recommendation?
 - Analysis and empirical evaluation
- Note: computational load increases

• Block constant model: limited

- Block constant model: limited
- Extension to Markov random fields?

- Block constant model: limited
- Extension to Markov random fields?
- Upper bound on achievable BER
 - Use PAF or its variants

- Block constant model: limited
- Extension to Markov random fields?
- Upper bound on achievable BER
 - Use PAF or its variants
- Lower bound on BER?
 - Due to rearrangements, we do not know the dependence neighborhood
 - Suppose an oracle gives us the neighborhood
 - We do not know the conditional law of the MRF
 - How do we estimate the MRF?

• Social connections, item content, etc.

- Social connections, item content, etc.
- Side-information may or may not be correlated with rating data
 - How do we identify relevant side-information?
 - How do we use relevant side-information compute similarities or fit a regression?

- Social connections, item content, etc.
- Side-information may or may not be correlated with rating data
 - How do we identify relevant side-information?
 - How do we use relevant side-information compute similarities or fit a regression?
- Related to multi-view clustering
 - Given multiple feature similarities, how do we cluster objects?
 - Features could reflect same or different relationships

• Time-stamps play an important role in Netflix Grand Prize (Koren, 2009, Bell et al, 2009)

- Time-stamps play an important role in Netflix Grand Prize (Koren, 2009, Bell et al, 2009)
- Temporal models and provably good schemes?

- Time-stamps play an important role in Netflix Grand Prize (Koren, 2009, Bell et al, 2009)
- Temporal models and provably good schemes?
- Dynamics of recommender systems:
 - Recommend items
 - Users choose from the recommended items
 - How does the rating matrix evolve?

- Sparse vector, say K non-zero entries
 - Product of any (K+1) or more entries is zero
 - Multinomial constraints

- Sparse vector, say K non-zero entries
 - Product of any (K+1) or more entries is zero
 - Multinomial constraints
- Low-rank N-by-N matrix, say rank K
 - Consider coefficients of characteristic polynomials
 - Each a multinomial of matrix entries
 - N-K+1 coefficients are zero

- Sparse vector, say K non-zero entries
 - Product of any (K+1) or more entries is zero
 - Multinomial constraints
- Low-rank N-by-N matrix, say rank K
 - Consider coefficients of characteristic polynomials
 - Each a multinomial of matrix entries
 - N-K+1 coefficients are zero
- General problem: Recover a vector in satisfying multinomial constraints from few samples

Miscellaneous

Miscellaneous

- Dealing with spam
 - Consider a group of rogue users
 - Given PAF, what is the worst effect they can have, given a bound on the number of items they can rate?

Miscellaneous

- Dealing with spam
 - Consider a group of rogue users
 - Given PAF, what is the worst effect they can have, given a bound on the number of items they can rate?
- Privacy
 - Personalization: Need information about taste
 - But potential for misuse of information
 - Let market figure out the user-vendor trust level?
 - A peer-to-peer system?

Some Related References (Not Exhaustive)

References

• Review Papers

- G. Adomavicius, A. Tuzhilin, "Toward the Next Generation of Recommender Systems: A Survey of the State-of-the-Art and Possible Extensions," *IEEE Transactions on Knowledge and Data Engineering*, pp. 734-749, June, 2005
- X. Su and T. M. Khoshgoftaar, "A survey of collaborative filtering techniques," Advances in Artificial Intelligence, 2009

• Datasets

- Movielens: <u>http://www.movielens.org</u>/
- Yahoo Webscope: <u>http://webscope.sandbox.yahoo.com/</u>

• Netflix Prize

- R. Bell and Y. Koren, "Improved neighborhood-based collaborative filtering," KDD, 2007
- Y. Koren, "The BellKor Solution to the Netflix Grand Prize," 2009, http:// citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.162.2118
- A. Toscher et al, "The BigChaos Solution to the Netflix Grand Prize," 2009, http:// www.stat.osu.edu/~dmsl/GrandPrize2009_BPC_BigChaos.pdf
References (Contd.)

• Low-Rank Matrix Completion

- E. J. Candès and B. Recht, "Exact matrix completion via convex optimization," *Found.* of Comput. Math., **9** 717-772
- E. J. Candès and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," *IEEE Trans. Inform. Theory*, **56**(5), 2053-2080
- R. Keshavan, A. Montanari, and S. Oh, "Matrix Completion from Noisy Entries," Journal of Machine Learning Research, 2010
- ISIT 2009, 2010 special sessions on matrix completion

• Estimation of rearranged smooth processes

- S. T. Aditya, O. Dabeer, and B. K. Dey, "A channel coding perspective of recommendation systems," *ISIT* 2009, pp. 319–323
- S. T. Aditya, O. Dabeer, and B. K. Dey, "A channel coding perspective of collaboratuve filters," to appear in *IEEE Transactions on Information Theory*, 2011
- K. Barman, O. Dabeer, "Local Popularity Based Collaborative Filters," *ISIT*, June 2010, Austin, USA
- K. Barman, O. Dabeer, "What is Popular Amongst Your Friends?" submitted to *IEEE Transactions on Information Theory*, July 2010 (arXiv:1006.1772)

References (Contd.)

• Committee methods

- R. E. Schapire, "The boosting approach to machine learning: An overview," Lecture Notes in Staitsics, New York, pp. 149-172, 2003
- Tin Kam Ho, "The random subspace method for constructing decision forests," *Pattern Analysis and Machine Intelligence, IEEE Transactions on*, vol.20, no.8, pp.832-844, Aug 1998
- T. Hastie, R. Tibshirani, and J. Friedman, "The Elements of Statistical Learning," Springer-Verlag, 2003