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•Introduction (15 mins)

- Recommendation systems

- The Collaborative Filtering component

•State of the Art (15 mins)

- Neighborhood methods and latent factor models

- Blend many schemes

- Provably good principles?

•Two mathematical models (15 mins)

- Estimation of rearranged smooth fields

- Low-rank matrix completion
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•Low-rank matrix completion (20 mins)

- Candes, Recht (2008) - links with CS

- Keshavan, Oh, Montanari (2009) - link with SVD

- Many others

•Estimation of rearranged smooth processes 
(90 mins)

- A “channel coding” result (Aditya, D, Dey, 2009)

- Popularity Amongst Friends (PAF) algorithm 

- Empirical performance of PAF

- BER analysis of PAF (Barman, D, 2010)

•Future directions (25 mins)
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Beyond Search

?

Shopping

Services

Travel

Events

Media

Social Network

Web Search: 
Long list of 

related items

Recommendations: 
Few “likable” items

Limited domain



Recommendations in Action

•Amazon 

- People who bought this also bought...

•Google News: recommended stories 

•iTunes - Genius sidebar

•Netflix 

- Suggests movies using rating matrix

•Facebook, LinkedIn 

- Suggest connections

•RichRelevance recommendation engine

- Disney Stores, Sears, Office Depot, etc.
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Challenges

•A new kind of estimation problem

•Massive data 

- iTunes: 10+ million songs, many more users

- Scalability is paramount

•Lack of good statistical models

- Rating - subjective, context-dependent; spam

•Sparse observations

- Computational boon but makes model inference 
difficult

•Privacy issues
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What Data Can We Use?

User Features

Location
Gender

Age
Contacts

Item Features

Director
Cast
Year
Genre

Joint Features

Time
Ratings (Netflix)

Clicks (Google News)
Buy (Amazon)
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Some Datasets

•Movielens

- 3900 movies, 6040 users, 1 million ratings

- 10681 movies, 71567 users, 10 million ratings

•Netflix

- 17,770 movies, 480,189 users, about 100 million 
ratings, date of rating, movie names

- Not online anymore but I have a copy

•Yahoo Music data

- 136,000 songs, 1.8 million users, 717 million ratings

- Genre, artist, album attributes
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Collaborative Filtering

•Content based recommendations 

- Use similarity of item contents

•Collaborative filtering (CF) 

- Exploit past user-item rating data

- He likes what she likes

•Many practical schemes use a blend of both

- Collaborative filter with side-information

•In this tutorial: CF with no side-information



The Problem

2 ? 1 3

4 4 ? ?

? 3 1 ?

1 ? 2 ?

Recommend items based on 
available ratings

Users

Items



State of the Art
(Review papers: Adomavicius et al, 2005; Su et al 2009)
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Latent Variable Model

Parameter
Space

Rating
Matrix

Xi,j = Fi,j(θ)
Fi,j known
θ unknown

Parameter
or

latent
variable

Example: X ∼ m× n, U ∼ m× r, V ∼ r × n,

X = UV, θ = (U, V )



Factor Analysis: An SVD 
Inspired Algorithm

• Factorization: X = UV , X is m× n, U is m× r, V
is r × n, and r << min{m, n}.

• Alternating Least-Squares: Initialize U , solve

min
V
�X − UV �2F .

Fix V , and solve for best U .

• For collaborative filtering: Evaluate error only over
known entries, use gradient descent. (Variants in
Koren, 2009; Keshavan, ISIT 2009).

• When does this method work?
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Neighborhood Methods

•Identify a relevant “neighborhood” for any 
matrix entry

- Related to clustering of users and/or items

•Predictor uses neighborhood data

•Parameters learnt from known data 

•Example: 

- Neighborhood: K most similar items 

- Predictor: Affine map of average item ratings

- Parameter estimation: Least-squares

- A variant in Koren, 2009
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Practical Schemes

•Committee Methods: Blend weak 
estimators

- Strong empirical and theoretical backing

- Popular in classification and regression

•Blending collaborative filters

- The Netflix prize winner blends 100+ algorithms 

- SVD inspired algorithms, neighborhood methods, 
exploiting time stamps, movie names

- Typical individual RMSE is 0.87-0.92 (on test data)

- After blending, RMSE is about 0.85 

- RichRelevance blends about 40 algorithms
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Some Questions

•Is a reduction of RMSE from 0.95 to 0.85 
relevant on a scale of 1-5?

- Why not probability of error?

•Do we need so many non-trivial predictors?

- Identify a most important subset

- Provably good principles?

•In this tutorial, we explore these questions

- Empirical results on Movielens, Netflix

- Theoretical results for two mathematical models
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Movielens Rating Matrix



Low-Rank Rating Matrix

•SVD inspired algorithms

- Koren el al (2009) and 
earlier

•Low-rank matrix 
completion

- Candes, Recht (2008)

- Keshavan et al (2009)

- Neka et al (2009)

- Lee and Bresler (2009)

2 ? 1 3

4 4 ? ?

? 3 1 ?

1 ? 2 ?
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Estimation of Rearranged 
Smooth Processes

Unknown
Clusters

Errors

Erasures

? (in poly time)

Introduced in Aditya, D, Dey (ISIT 2009)
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The Relationship: 
Commonalities

•From data compression: 

- Smoothness corresponds to fast decay of coefficients 
in a wavelet/DCT expansion

- Fast decay implies a sparse set of coefficients 
capture most signal energy

•Hence smoothness implies approximation 
with low-rank structure

•Row-column permutations preserve rank

•Hence a low-rank approximation makes sense



The Relationship: Differences



The Relationship: Differences

•We prefer finite alphabet

- Real data has finite alphabet

- Allows consideration of probability of error in a 
recommendation (more relevant than RMSE?)

- What is “smoothness”? 



The Relationship: Differences

•We prefer finite alphabet

- Real data has finite alphabet

- Allows consideration of probability of error in a 
recommendation (more relevant than RMSE?)

- What is “smoothness”? 

•Lot of noise - not just stability analysis

- User noise

- Modeling noise

- Better describes real data?

- Keshavan et al (2010) also consider noise in low-
rank model



Low-Rank Matrix Completion
with In-Coherent Singular 

Vectors



Spectral Norm Minimization

• S = Set of locations at which X is known

• The problem:

min
Y :Yi,j=Xi,j ,(i,j)∈S

rank(Y )

• rank(Y ) = �σσσ(Y )��0 = # non-zero singular values

• Relaxation (Candes, Recht, 2008):

min
Y :Yi,j=Xi,j ,(i,j)∈S

�σσσ(Y )��1

Can be cast as a semi-definite program.

• Poor scalability, but with enough samples, original matrix
can be recovered
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OptSpace 
(Keshavan et al, ISIT 2009)

•Inserting zeros:

- Replace missing entries by 0

- If a row/column has ‘many’ samples, then make it 
all 0

•Find a low-rank approximation - initialization 
for next step

•Insert back pruned rows/columns

•Consider error restricted to known entries 
and apply gradient descent

•Faster than Candes-Recht with similar 
theoretical guarantee (and MSE bound)
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Other Related Works

•Koren, Bell, Volinsky (IEEE Computer, 
2009)

- No theoretical guarantee

•ISIT 2009, 2010 special sessions

•For example: Lee and Bresler, ISIT 2009

- Linear measurements 

- Close link to matching pursuits (best sparse 
representation of signals)

- No theoretical guarantee
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Data Model

Unknown
Clusters

Errors

Erasures

? (in poly time)

Channel Coding/
Estimation of rearranged, ‘smooth’ process,

under noise and erasures
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Relation with Low-Rank 
Literature

•Underlying true matrix is low-rank

- Recall link between ‘smoothness’ and low-rank

•Incorporates user and modeling noise

- Candes and Plan (2009) consider small noise for 
stability analysis

•Finite alphabet

- Hence asymptotic error free recovery possible even 
in presence of noise

- Probability of error in recovering entire matrix

- Bit error rate (BER)
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The Model in Words

•Underlying true block constant matrix 

- Cluster size determines degrees of freedom

•Clusters not known, but deterministic

•Errors: i.i.d., binary symmetric channel, 
represent noisy user behavior

•Erasures: i.i.d., model missing data

•Diverse opinions: i.i.d. Bernoulli(1/2) 
ratings across clusters

- No information from self data; must use 
collaborative filtering 



Some Assumptions

• Matrix: m× n, m = Θ(n)

• Erasure probability
� = 1− c

nα
, 0 ≤ α ≤ 1

α < 1/2: Near-quadratic regime
α > 1/2: Near-linear regime

• All clusters of same order

– Number of clusters = Ω(log n) to ensure
P(cluster merging) is vanishing
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Recover Entire Matrix
(Aditya, Dabeer, Dey, ISIT 2009; to appear IEEE Trans. Inform. Theory)

Clustering algo fails
Limits not known

α10.5

log(cluster size)

Θ(α log n + log log n)

Pe → 0
For cluster + majority

Pe → 1
For any scheme

Threshold
determined by

majority 
decoding
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Implementation on Real Data

•Our clustering algo:

- Similarity = #commonly agreed entries/# common 
entries

- Threshold similarities

•Good for analysis

•But bad for implementation as may not lead 
to clusters on finite data

•Need a modification

•Also clustering both rows and columns is 
computationally intensive
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PAF for Binary Ratings

•Algorithm:

- For user 1, find top K similar users

- Similarity = # agreements in available ratings

- Recommend an unseen item that is most popular 
amongst these K users

•Motivated by practice (example: Amazon)

•Not matrix completion

•Low complexity

- User node degree << Total number of users 

- Simple updates
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Performance Metrics

•RMSE - popular since Netflix prize

•MAE - popular in earlier works

•Probability that entire matrix is recovered

- Candes, Recht (2008) and others

- Aditya, D, Dey (2009)

•Our focus is on bit error rate (BER)

- Probability that a recommendation made is 
incorrect



Empirical Performance
(Movielens and Netflix)
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Setup

•Rating quantization

- 4,5 mapped to 1 (yes), 1-3 mapped to 0 (no)

•Hide 30% of data per user; can compute 
metrics only when recommended item is in 
the hidden list

•Comparison with OptSpace (Keshavan et al, 
2008)

- Representative of matrix algorithms

- Evaluated only on items recommended by local 
algorithm

- Unquantized input; output quantized for BER
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Empirical Performance 

BER MAE RMSE

PAF 0.103 0.627 0.748

OptSpace 0.108 0.581 0.733

Movielens

Naive Estimate:
For Local Algorithm, 

to compute 
RMSE, MAE

1 is mapped to 4.5

BER MAE RMSE

PAF 0.18 0.742 0.942

OptSpace 0.19 0.590 0.742

Snapshot of Netflix (2000)

Netflix has higher
percentage of
low ratings



Empirical Performance (Contd.)

BER MAE RMSE

PAF 0.335 0.709 1.010

OptSpace 0.327 0.718 0.901

Movielens After Removing Popular Movies
(those with 60% or more 1’s)
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Remarks

•PAF competitive for BER

•Are MAE, RMSE relevant?

- Scale 1-5, RMSE 0.7+ - poor confidence intervals

- Noisy data and difficult to squeeze out more than 1 
bit information 

• 2-10 times faster than OptSpace

- Also amenable to recursive update

•Any provably good properties?
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α10.5

log(cluster size)

BER

=
p�

1
γ �

p�
1
γ � + (1− p)�

1
γ �

2(α− γ) log n

For K = # friends
BER=0

2α log n



Asymptotic BER of PAF

PAF fails even
with no noise 

BER=1/2

α10.5

log(cluster size)

BER

=
p�

1
γ �

p�
1
γ � + (1− p)�

1
γ �

2(α− γ) log n

For K = # friends
BER=0

2α log n
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Three Phases

•Phase 1: Large cluster, near-quadratic 
samples, BER=0

- Top neighbors good, large cluster averages out noise

•Phase 2: Small cluster, near-quadratic 
samples, 0 < BER < 1/2

- Top neighbors good 

- But cluster too small to average out noise

- Optimum list size = # friends

•Phase 3: Near-linear samples

- Most neighbors picked are bad
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The Movielens Matrix

Side information
for clustering

Side information
for regression

Phase 2?

Phase 3?



Degrees of Freedom 
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Remarks

•PAF algorithm is scalable and competitive 

•Provably good in near-quadratic regime

- BER bounded away from 1/2

•Near-linear regime: Blend side-information 

•Refining our simple model

- Sampling - account for heavy tails 

- Incorporate item correlations

- Rearranged general ‘smooth’ processes?

- Incorporating side information?



Proof Outline
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Recovering Entire Matrix:
Converse

•Analyze probability of error in recovering 
entire matrix as matrix size grows

•To show that if cluster size is small, then 
w.h.p. no scheme can yield perfect recovery

- In fact, a strong converse: probability of error 
approaches 1

•Consider oracle that tells us the clusters

•Once the clusters are known, the MAP 
decoder in each block is just majority 
decoder
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Known Clusters

• Let p1 = � + 2(1− �)
�

p(1− p).

• If
s∗(X) ≥ ln(mn)

ln(1/p1)

then Pe|A,B(X)→ 0.

• If

s∗(X) ≤ (1− δ) ln(mn)
ln(1/p1)

for some δ > 0,

then Pe|A,B(X)→ 1.

∼ Cnα ln(n)

for � = 1− c

nα
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Achievability
(Small Clustering Error) 

•First cluster rows and columns, and then 
assuming correct clustering, apply majority 
decoding

•Row/Column Clustering:

- For every pair of rows, find the Hamming distance 
over commonly sampled positions

- Compare with threshold to decide whether rows are 
in same cluster or not

- Error in clustering if any pair is misclassified

•Analysis: Use concentration of metric 
around its mean to choose threshold 



The Clustering Algorithm

• For rows i, j with Nij commonly sampled posi-
tions

dij =
1

Nij

n�

k=1

1 (Yik �= e, Yjk �= e) 1(Yik �= Yjk).

• Choose threshold d0 ∈ (2p0(1− p0), 1/2).

• If dij < d0, declare i, j in same cluster, else de-
clare them to be in different clusters.



Clustering Error - Simpler Case

• Simplifications:

– Square matrix, uniform cluster size, � fixed

– Suppose all channel parameters are known.

– Normalize metric by n instead of Nij .

• Hypothesis A - Rows in same cluster: Condi-

tioned on X, dij is avg. of i.i.d. Bernoulli variables

with mean µ.

• Hypothesis B - Rows in different cluster: Con-

ditioned on X, dij is avg. of two groups of i.i.d.

random variables and has mean µ + δsij/n, sij =

Hamming distance between rows.



Clustering Error - Simpler Case 
(Contd.)

• Let t=# of clusters, n0= size of cluster

• si,j is n0× Binomial(t,1/2); concentrates if t→∞

• Gap in means: δ/2; pick d0 in this gap.

• Errors:

– Hypothesis A is true: P (error|A) = O(exp(−cn)).

– Hypothesis B is true: P (error|B) = O(exp(−ct)).

• Clustering error: By union bound, diminishing pro-

vided t > C ln(n); otherwise does not depend on n0.



Main Result
(Illustration)
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Recall: Asymptotic BER of PAF

α10.5

log(cluster size)

BER

=
p�

1
γ �

p�
1
γ � + (1− p)�

1
γ �

2(α− γ) log n

For K = # friends
BER=0

2α log n



Recall: Asymptotic BER of PAF

PAF fails even
with no noise 

BER=1/2

α10.5

log(cluster size)

BER

=
p�

1
γ �

p�
1
γ � + (1− p)�

1
γ �

2(α− γ) log n

For K = # friends
BER=0

2α log n



Phase 2: Finding Good 
Neighbors

• Similarity between row 1 and another row in its clus-
ter:

Binomial
�
n, c2[p2 + (1− p)2]n−2α

�

• Similarity between row 1 and a row in a different
cluster:

Binomial
�
n, c2n−2α/2

�

• Above marginals concentrate for α < 1/2. So we
hope to find good neighbors.

• Detailed calculations (accounting for dependence) con-
firm the hope.



Phase 2: Filtering Noise

• K = # friends - w.h.p. all neighbors are good

• Most popular column: w.h.p. # 1’s = �1/γ�, and #
0’s = 0

– For an arbitrary column, E[#samples] = Θ(1/nγ)

• Aposteriori probability:

P (X(1, j∗) = 0|YK(:, j∗)) =
p#1−#0

p#1−#0 + (1 − p)#1−#0
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Phase 3: Failure of PAF/
Clustering

•Most neighbors picked by PAF are bad

- Even the clustering algorithm we considered fails

•Similarity metrics do not concentrate

- Probability that a row is not sampled is non-zero

- Probability that distinct part of bad candidates is 
never sampled is non-zero

•Number of clusters increasing to infinity 
implies # good candidates/(# bad 
candidates) approaches zero

•A problem for any pairwise scheme
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Improving PAF

•PAF exploits correlations only amongst users

- Correlation amongst items?

•Gap w.r.t. optimal threshold for recovering 
entire matrix

•How do we modify PAF?

- For an item, find most similar items

- Given top few recommendations by PAF, how do 
we use the list of related items to pick a 
recommendation?

- Analysis and empirical evaluation

•Note: computational load increases
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General ‘Smooth’ Processes

•Block constant model: limited

•Extension to Markov random fields?

•Upper bound on achievable BER

- Use PAF or its variants

•Lower bound on BER?

- Due to rearrangements, we do not know the 
dependence neighborhood

- Suppose an oracle gives us the neighborhood

- We do not know the conditional law of the MRF

- How do we estimate the MRF?
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Side-Information

•Social connections, item content, etc.

•Side-information may or may not be 
correlated with rating data

- How do we identify relevant side-information?

- How do we use relevant side-information - compute 
similarities or fit a regression?

•Related to multi-view clustering

- Given multiple feature similarities, how do we 
cluster objects?

- Features could reflect same or different relationships
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The Time Axis

•Time-stamps play an important role in 
Netflix Grand Prize (Koren, 2009, Bell et al, 
2009)

•Temporal models and provably good 
schemes?

•Dynamics of recommender systems:

- Recommend items

- Users choose from the recommended items

- How does the rating matrix evolve?
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Matrix Completion and 
Compressed Sensing

•Sparse vector, say K non-zero entries

- Product of any (K+1) or more entries is zero

- Multinomial constraints

•Low-rank N-by-N matrix, say rank K

- Consider coefficients of characteristic polynomials

- Each a multinomial of matrix entries

- N-K+1 coefficients are zero

•General problem: Recover a vector in 
satisfying multinomial constraints from few 
samples
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Miscellaneous

•Dealing with spam

- Consider a group of rogue users

- Given PAF, what is the worst effect they can have, 
given a bound on the number of items they can 
rate?

•Privacy

- Personalization: Need information about taste

- But potential for misuse of information

- Let market figure out the user-vendor trust level?

- A peer-to-peer system?
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