Network Flows for Functions

D. Manjunath
[Joint work with Virag Shah and Bikash Kumar Dey]

IIT Bombay

NCC 2011; 29 Jan 2011



Outline

The problem setup

The LP formulations and algorithms
Extensions and open problems
Other works

Summary



The setting

¢ Terminal (aka sink) nodes want to recover functions of data
from distributed sources. Example of functions:
max, min, average, etc.

e Application example: Average temperature sensed by
many sensors, average/maximum traffic at different parts
of a network.
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Computing function: a simple example
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f(X,Y,Z2)= max(X,Y,Z)



Computing function: a simple example

f(X,Y,2)= max(X,Y,2)

e Computing at internal nodes is a natural
choice—distributed computation of distributed data.

e We assume: no mixing of data across different realizations.



Computation tree: §
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Computation tree of ©(Xy, Xz, X3) = X1 X5 + X3



Computation tree:

e A single computation tree may serve
different functions.

e Our techniques depend only on the
computation tree and not on the
function.

¢ A single function may allow multiple
computationt trees; we start by
assuming a single computation tree
and generalise to multiple trees.
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e(X17 X27 X3) =
X1Xo + X3
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Our setup

¢ A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

e The network has undirected half-duplex links with a total
capacity constraint. Easily applicable to directed networks.
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total flow < c(uv)

e Objective: to find the maximum computation rate per use
of the network and to find an optimum computation and
communication scheme.



Embedding: lllustration for © = XX, + X3
N and G and two possible embeddings.
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Definition

A path in NV is a sequence of nodes vy, vy, -+ ,Vv|; | > 1s.t.
Vivijp e Efori=1,2,...,1 — 1.
Let P denote the set of paths in V.
Define &4(¢) 2 {nBr|head () = tail(8)} and >—9'
®,(0) 2 {1 e Tltail(n) = head(0)}. >H
The edges of G are ordered in a topological oy glr. " °
6

Definition: An embedding of G into NV is a

map B : I — P such that
1. start(B(6)) =s forl =1,2,...,k
2. end(B(n)) = start(B(0)) if n € ®4(0)

3. end(B(Gm)) =1.
Ori



Embedding-Edge LP

e What is the best time-sharing between the different
embeddings?

Embedding-Edge LP: Maximize A = ) 5 X(B) subject to
1. Capacity constraints

) re(e)x(B) <c(e), e cE (1)

BeB

2. Non-negativity constraints

x(B) >0, VB (2)

rg(e) = # of times that network edge e of A is used in
embedding B.
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Embedding-Edge LP

e A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
A

e |B|is exponential in |V|. So this LP has exponential
complexity.

e We need to seek simpler solutions
e We can identify each edge of G to be a flow.

e We can thus explore an efficient Node-Arc LP based on
“flow conservation.”
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Flow-conservation

e A complication: Flow can be destroyed or generated at
internal nodes.

A destroyed flow of type 6, or 6,
generates a flow of type n of the same
volume.

A flow generated at a node is assumed
to flow on a virtual self-loop at that
node. n

The flow in the self-loop contributes to
the incoming flow, but not to the
outgoing flow.



Flow-conservation
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Node-Arc LP

Node-Arc LP: Maximize )\ subject to following
constraints. For any node v € V

~3
1. Functional conservation of flows: ?é\ /92
o, n~1
W+ Y - > &
ueN(v) ueN’(v) n %:g
VO € T\ {6} and V¥ € ® (). n~1

2. Conservation and termination of 6r:

0 0 -\ v=t
f \FI f I _
Z Z . otherwise

ueN(v) UEN’(v)



Node-Arc LP
3. Generation of 6, VI € {1,2,...,k}:

o _ A V=S5
w 0. otherwise

4. Capacity constraints

> (fue\, +f\,9u) <c(uv), Yuv € E.
ber

5. Non-negativity constraints

f6, >0,Yuv e EandVh e T
f0,>0,YueVandvderl
A>0.
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Node-Arc LP — Embedding-Edge LP

This is a similar to LP formulations in multi-commodity flow.
An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

Atleast one flow 4, is completely removed in each iteration
of Extract-Embedding.

The algorithm has the overall complexity O(x2?|E|?).

The LP has O(«|E|) number of variables, O(x|E|) number
of non-negativity constraints, and O(x|V | + |E|) number of
other constraints.



Toward an efficient e-approximate solution

For multi-commodity flow, and more general packing LPs,
Garg and Konemann [1998] gave a primal-dual algorithm
to compute a solution which achieves at least (1 — ¢)
fraction of the optimal rate.

Our Embedding-Edge LP is also such a ‘packing LP’.

So, Garg-Konemann algorithm can be used for our
problem.

The algorithm uses an oracle subroutine that solves a
‘dual’ problem.



Toward an efficient e-approximate solution

Let I(e) be the weight of edge e. Define the weight of an
embedding B as

wi(B) = Y rs(e)l(e).
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e The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.



Toward an efficient e-approximate solution

Let I(e) be the weight of edge e. Define the weight of an
embedding B as

wi(B) = Y rs(e)l(e).

ecB

e The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.

e We later give an efficient algorithm for doing this.



An efficient e-approximate solution

Algorithm:  Algorithm for finding approximately optimal x and A

Input: Network graph N = (V, E), capacities c(e), set of
source nodes S, terminal node t, computation tree G = (2, ),
the desired accuracy ¢
Output: Primal solution {x(B),B € B}
Initialize I(e) := d/c(e), Ve e E,x(B) :=0,VB € B;
while D(l) < 1do % D(I) =>_c(e)l(e)
B* := OptimalEmbedding(L);
e* := edge in B* with smallest c(e)/rg-(e) ;
X(B*) = X(B*) + c(e”)/rp- (€");
I(e) = I(e)(1 + el Ae(e)) ve € B*;
end

X(B) = X(B)/Iogl+e %7VB1




OptimalEmbedding(L): overview

e For each edge 6;, starting from 64, it finds a way to compute
; at each network node at the minimum cost possible.

e It keeps track of that minimum cost and also the
‘predecessor’ node from where it receives 6.

e If 6; is computed at that node itself then the predecessor
node is itself.



OptimalEmbedding(L)

e Computing 6; fori € {1,2,...,x} at the minimum cost at a
node u is equivalent to finding the shortest path to u from
sj. We do this by using Dijkstra’s algorithm.

e For any other i, the node u can either compute 6; from
®+(6;) or receive it from one of its neighbors.

¢ To take this into account, unlike Dijkstra’s
algorithm, we initialize the cost of computing
¢; with the cost of computing ®+(6;) at the
same node. The rest is similar to Dijkstra’s
algorithm.

e Finally the predecessors are backtracked t
from t to find the optimal embedding.



Complexity

e Overall complexity of OptimalEmbedding(L):
O(x(IE[ +[V[log [V]))

e The number of iterations in the primal-dual algorithm is of
the order O(e*|E|log, . |E|).

e Thus the overall complexity of the primal-dual algorithm is
O (e *KIE[(IE[ + |V [log|V)logy .. [E]).



Extensions and Open Problems

Extensions
e Multiple trees for the same function.
e Multiple terminals and functions of distinct sources.
e Computing with a specified precision.
e Consider energy limited sensors.
Open problems

¢ An immediate open problem: The computation graph G is a
DAG and not a tree.



In perspective: Other setups for function networks

Wired/wireless networks: Graph or hypergraph Ui
i
Uu——mYV u
V3
Directed or undirected links \4
U@—@ v u@g—0\
flow < c(uv) total flow < c(uv)

block computation/coding vs. bit-wise computation
zero-error recovery vs. small-error recovery
correlated vs. independent sources

single terminal vs. multiple terminals

same vs. different functions at different terminals
fixed vs. random networks



Typical objectives

e For any given link capacities, what is the maximum rate (or
rate-region for multiple terminals) that is achievable? More
generally, rate-distortion trade-off?

e Assymptotic scaling laws for required communication
complexity per node

¢ Efficient encoding/decoding



Summary of other views

e In information theory: Small networks, correlated sources
with the objective of finding achievable rate-region and
rate-distortion.

e Scaling laws for randomly deployed networks: Does not
consider a fixed network.

e Network coding: internal nodes are allowed to mix received
data to construct outgoing data even for communication.



The big picture

Information
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The big picture

Flow for
functions
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