
Network Flows for Functions

D. Manjunath
[Joint work with Virag Shah and Bikash Kumar Dey]

IIT Bombay

NCC 2011; 29 Jan 2011

Outline

• The problem setup

• The LP formulations and algorithms

• Extensions and open problems

• Other works

• Summary

The setting

• Terminal (aka sink) nodes want to recover functions of data
from distributed sources. Example of functions:
max,min, average, etc.

• Application example: Average temperature sensed by
many sensors, average/maximum traffic at different parts
of a network.

S

S

S

S
S

S

R

R
T

S

The setting

S1 S2 S3

1T 2T

X1

X3
X21 X31 X1

X2

X1 X2

X1

1

X22 2 2

,, X2f() X1g(), ,f() g()

Computing function: a simple example

X

Z

Y

f(X,Y,Z)= max(X,Y,Z)

Computing function: a simple example

X

Z

Y

f(X,Y,Z)= max(X,Y,Z)

max(X,Y)

max(X,Y,Z)

• Computing at internal nodes is a natural
choice—distributed computation of distributed data.

• We assume: no mixing of data across different realizations.

Computation tree: G

X1 X2
X3

Θ

*

+

X1X2

Computation tree of Θ(X1,X2,X3) = X1X2 + X3

Computation tree: G

• A single computation tree may serve
different functions.

• Our techniques depend only on the
computation tree and not on the
function.

• A single function may allow multiple
computationt trees; we start by
assuming a single computation tree
and generalise to multiple trees.

X1 X2
X3

Θ

*

+

Θ(X1,X2,X3) =
X1X2 + X3

OR

(X1 + X2)X3

OR
...

Our setup

• A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

Our setup

• A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

• The network has undirected half-duplex links with a total
capacity constraint. Easily applicable to directed networks.

u v
total flow ≤ c(uv)

Our setup

• A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

• The network has undirected half-duplex links with a total
capacity constraint. Easily applicable to directed networks.

u v
total flow ≤ c(uv)

• Objective: to find the maximum computation rate per use
of the network and to find an optimum computation and
communication scheme.

Embedding: Illustration for Θ = X1X2 + X3

N and G and two possible embeddings.

t

s1 s2 s3

X1 X2
X3

Θ

*

+

X1X2

X2

s1 s2 s3

t

X1

X3

X3

Θ

X2

X1

X1*X2

s1 s2 s3

t

X1 X2

X1*X2

X3

X3

Definition

A path in N is a sequence of nodes v1, v2, · · · , vl ; l ≥ 1 s.t.
vivi+1 ∈ E for i = 1, 2, . . . , l − 1.

Let P denote the set of paths in N .

Definition

A path in N is a sequence of nodes v1, v2, · · · , vl ; l ≥ 1 s.t.
vivi+1 ∈ E for i = 1, 2, . . . , l − 1.

Let P denote the set of paths in N .

Define Φ↑(θ)
△
= {ηßΓ|head(η) = tail(θ)} and

Φ↓(θ)
△
= {η ∈ Γ|tail(η) = head(θ)}.

θ

θ

Definition

A path in N is a sequence of nodes v1, v2, · · · , vl ; l ≥ 1 s.t.
vivi+1 ∈ E for i = 1, 2, . . . , l − 1.

Let P denote the set of paths in N .

Define Φ↑(θ)
△
= {ηßΓ|head(η) = tail(θ)} and

Φ↓(θ)
△
= {η ∈ Γ|tail(η) = head(θ)}.

θ

θ
The edges of G are ordered in a topological order.

Definition: An embedding of G into N is a

map B : Γ → P such that

1. start(B(θl)) = sl for l = 1, 2, . . . , κ

2. end(B(η)) = start(B(θ)) if η ∈ Φ↑(θ)

3. end(B(θ|Γ|)) = t .

θ1 θ2 θκ

θ|Γ|

Embedding-Edge LP

• What is the best time-sharing between the different
embeddings?

Embedding-Edge LP: Maximize λ =
∑

B∈B x(B) subject to
1. Capacity constraints

∑

B∈B

rB(e)x(B) ≤ c(e), ∀e ∈ E (1)

2. Non-negativity constraints

x(B) ≥ 0, ∀B (2)

rB(e) = # of times that network edge e of N is used in
embedding B.

Embedding-Edge LP

• A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
λ.

Embedding-Edge LP

• A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
λ.

• |B| is exponential in |V |. So this LP has exponential
complexity.

Embedding-Edge LP

• A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
λ.

• |B| is exponential in |V |. So this LP has exponential
complexity.

• We need to seek simpler solutions
• We can identify each edge of G to be a flow.

Embedding-Edge LP

• A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
λ.

• |B| is exponential in |V |. So this LP has exponential
complexity.

• We need to seek simpler solutions
• We can identify each edge of G to be a flow.

• We can thus explore an efficient Node-Arc LP based on
“flow conservation.”

Flow-conservation

• A complication: Flow can be destroyed or generated at
internal nodes.

Flow-conservation

• A complication: Flow can be destroyed or generated at
internal nodes.

• A destroyed flow of type θ1 or θ2

generates a flow of type η of the same
volume.

Flow-conservation

• A complication: Flow can be destroyed or generated at
internal nodes.

• A destroyed flow of type θ1 or θ2

generates a flow of type η of the same
volume.

• A flow generated at a node is assumed
to flow on a virtual self-loop at that
node.

• The flow in the self-loop contributes to
the incoming flow, but not to the
outgoing flow.

θ1 θ2

η

Flow-conservation

X2

s1 s2 s3

t

X1

X3

X3

Θ

X2

X1

s1 s2 s3

t

X2

X3

X3

X1

X1*X2

Flow-conservation

X2

s1 s2 s3

t

X1

X3

X3

Θ

X2

X1

s1 s2 s3

t

X2

X3

X3

X1

X1*X2
f X2f X1=1.5

f X1=1.5

f X1=1.5

f X3=1.5

f X3=1f X1X2+X3

f X1X2=0.5

f X3=1

f X3=1.5

X1X2+X3f =0.5

f X1X2

=1f X1X2+X3
=1.5

=1.5f X2

=1.5f X2

s2 s3

t

s1

=1.5

=0.5

}
}

0.51.0

Node-Arc LP

Node-Arc LP: Maximize λ subject to following
constraints. For any node v ∈ V

1. Functional conservation of flows:

f ηvv +
∑

u∈N(v)

f θvu −
∑

u∈N′(v)

f θuv = 0,

∀θ ∈ Γ \ {θ|Γ|} and ∀η ∈ Φ↓(θ).

θ1 θ2

η

θ1 θ2

θ1
θ2
η

~ 2
~ 2
~ 1

η

~ 3

~ 1
~ 3

2. Conservation and termination of θ|Γ|:

∑

u∈N(v)

f
θ|Γ|
vu −

∑

u∈N′(v)

f
θ|Γ|
uv =

{

−λ v = t

0. otherwise

Node-Arc LP
3. Generation of θl ∀l ∈ {1, 2, . . . , κ}:

f θl
vv =

{

λ v = sl

0. otherwise

4. Capacity constraints

∑

θ∈Γ

(

f θuv + f θvu

)

≤ c(uv), ∀uv ∈ E .

5. Non-negativity constraints

f θuv ≥ 0, ∀uv ∈ E and ∀θ ∈ Γ

f θuu ≥ 0, ∀u ∈ V and ∀θ ∈ Γ

λ ≥ 0.

Node-Arc LP → Embedding-Edge LP

• This is a similar to LP formulations in multi-commodity flow.

Node-Arc LP → Embedding-Edge LP

• This is a similar to LP formulations in multi-commodity flow.

• An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

Node-Arc LP → Embedding-Edge LP

• This is a similar to LP formulations in multi-commodity flow.

• An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

• In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

Node-Arc LP → Embedding-Edge LP

• This is a similar to LP formulations in multi-commodity flow.

• An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

• In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

• Atleast one flow f θuv is completely removed in each iteration
of Extract-Embedding.

Node-Arc LP → Embedding-Edge LP

• This is a similar to LP formulations in multi-commodity flow.

• An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

• In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

• Atleast one flow f θuv is completely removed in each iteration
of Extract-Embedding.

• The algorithm has the overall complexity O(κ2|E |2).

• The LP has O(κ|E |) number of variables, O(κ|E |) number
of non-negativity constraints, and O(κ|V |+ |E |) number of
other constraints.

Toward an efficient ǫ-approximate solution

• For multi-commodity flow, and more general packing LPs,
Garg and Konemann [1998] gave a primal-dual algorithm
to compute a solution which achieves at least (1 − ǫ)
fraction of the optimal rate.

• Our Embedding-Edge LP is also such a ‘packing LP’.

• So, Garg-Konemann algorithm can be used for our
problem.

• The algorithm uses an oracle subroutine that solves a
‘dual’ problem.

Toward an efficient ǫ-approximate solution

Let l(e) be the weight of edge e. Define the weight of an
embedding B as

wL(B) =
∑

e∈B

rB(e)l(e).

• The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.

Toward an efficient ǫ-approximate solution

Let l(e) be the weight of edge e. Define the weight of an
embedding B as

wL(B) =
∑

e∈B

rB(e)l(e).

• The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.

• We later give an efficient algorithm for doing this.

An efficient ǫ-approximate solution

Algorithm: Algorithm for finding approximately optimal x and λ

Input: Network graph N = (V ,E), capacities c(e), set of
source nodes S, terminal node t , computation tree G = (Ω, Γ),
the desired accuracy ǫ
Output: Primal solution {x(B),B ∈ B}
Initialize l(e) := δ/c(e), ∀e ∈ E , x(B) := 0, ∀B ∈ B ;
while D(l) < 1 do % D(l) =

∑

c(e)l(e)
B∗ := OptimalEmbedding(L);
e∗ := edge in B∗ with smallest c(e)/rB∗(e) ;
x(B∗) := x(B∗) + c(e∗)/rB∗(e∗);
l(e) := l(e)(1 + ǫ c(e∗)/rB∗ (e∗)

c(e)/rB∗ (e)), ∀e ∈ B∗ ;
end
x(B) := x(B)/ log1+ǫ

1+ǫ
δ , ∀B;

OptimalEmbedding(L): overview

• For each edge θi , starting from θ1, it finds a way to compute
θi at each network node at the minimum cost possible.

• It keeps track of that minimum cost and also the
‘predecessor’ node from where it receives θi .

• If θi is computed at that node itself then the predecessor
node is itself.

OptimalEmbedding(L)

• Computing θi for i ∈ {1, 2, . . . , κ} at the minimum cost at a
node u is equivalent to finding the shortest path to u from
si . We do this by using Dijkstra’s algorithm.

• For any other i , the node u can either compute θi from
Φ↑(θi) or receive it from one of its neighbors.

• To take this into account, unlike Dijkstra’s
algorithm, we initialize the cost of computing
θi with the cost of computing Φ↑(θi) at the
same node. The rest is similar to Dijkstra’s
algorithm.

• Finally the predecessors are backtracked
from t to find the optimal embedding.

t

Complexity

• Overall complexity of OptimalEmbedding(L):
O(κ(|E |+ |V | log |V |))

• The number of iterations in the primal-dual algorithm is of
the order O(ǫ−1|E | log1+ǫ |E |).

• Thus the overall complexity of the primal-dual algorithm is
O
(

ǫ−1κ|E |(|E |+ |V | log |V |) log1+ǫ |E |
)

.

Extensions and Open Problems

Extensions
• Multiple trees for the same function.

• Multiple terminals and functions of distinct sources.

• Computing with a specified precision.

• Consider energy limited sensors.

Open problems
• An immediate open problem: The computation graph G is a

DAG and not a tree.

In perspective: Other setups for function networks

• Wired/wireless networks: Graph or hypergraph v1

v2

v3

v4

u v u

• Directed or undirected links

u v u v

flow ≤ c(uv) total flow ≤ c(uv)

• block computation/coding vs. bit-wise computation

• zero-error recovery vs. small-error recovery

• correlated vs. independent sources

• single terminal vs. multiple terminals

• same vs. different functions at different terminals

• fixed vs. random networks

Typical objectives

• For any given link capacities, what is the maximum rate (or
rate-region for multiple terminals) that is achievable? More
generally, rate-distortion trade-off?

• Assymptotic scaling laws for required communication
complexity per node

• Efficient encoding/decoding

Summary of other views

• In information theory: Small networks, correlated sources
with the objective of finding achievable rate-region and
rate-distortion.

• Scaling laws for randomly deployed networks: Does not
consider a fixed network.

• Network coding: internal nodes are allowed to mix received
data to construct outgoing data even for communication.

The big picture

Computer
Science

In
fo

rm
at

io
n

T
he

or
y

Network
coding

Networking

function
computation

Distributed

The big picture

Computer
Science

In
fo

rm
at

io
n

T
he

or
y

Network
codingflow

multi−commodity

Networking

function
computation

Distributed

The big picture

Computer
Science

In
fo

rm
at

io
n

T
he

or
y

functions
Flow for

Network
codingflow

multi−commodity

Networking

function
computation

Distributed

The End

The End

Thank you

The End

Thank you

Questions?

