Network Flows for Functions

D. Manjunath
[Joint work with Virag Shah and Bikash Kumar Dey]

IIT Bombay

NCC 2011; 29 Jan 2011

Outline

The problem setup

The LP formulations and algorithms
Extensions and open problems
Other works

Summary

The setting

¢ Terminal (aka sink) nodes want to recover functions of data
from distributed sources. Example of functions:
max, min, average, etc.

e Application example: Average temperature sensed by
many sensors, average/maximum traffic at different parts
of a network.

The setting

f(X0).f(X0) + + gika),g&k2)- -+

Computing function: a simple example

X Y

/ Z
-

f(X,Y,Z2)= max(X,Y,Z)

Computing function: a simple example

f(X,Y,2)= max(X,Y,2)

e Computing at internal nodes is a natural
choice—distributed computation of distributed data.

e We assume: no mixing of data across different realizations.

Computation tree: §

X1 X2

X1X2

Computation tree of ©(Xy, Xz, X3) = X1 X5 + X3

Computation tree:

e A single computation tree may serve
different functions.

e Our techniques depend only on the
computation tree and not on the
function.

¢ A single function may allow multiple
computationt trees; we start by
assuming a single computation tree
and generalise to multiple trees.

g

X1 X2

X3

e(X17 X27 X3) =
X1Xo + X3

OR
(X1 4+ X2)X3
OR

Our setup

¢ A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

Our setup

¢ A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

e The network has undirected half-duplex links with a total
capacity constraint. Easily applicable to directed networks.

U@—@

total flow < c(uv)

Our setup

¢ A single terminal wants to compute a single function of the
distributed using a given computation tree. Many
generalizations will follow.

e The network has undirected half-duplex links with a total
capacity constraint. Easily applicable to directed networks.

U@—@

total flow < c(uv)

e Objective: to find the maximum computation rate per use
of the network and to find an optimum computation and
communication scheme.

Embedding: lllustration for © = XX, + X3
N and G and two possible embeddings.

X1 X2

X1X2

Definition

A path in NV is a sequence of nodes vy, vy, -+ ,Vv|; | > 1s.t.
Vivijp e Efori=1,2,...,1 — 1.

Let P denote the set of paths in V.

Definition

A path in NV is a sequence of nodes vy, vy, -+ ,Vv|; | > 1s.t.
Vivijp e Efori=1,2,...,1 — 1.
Let P denote the set of paths in V.
Define &4(¢) 2 {nBr|head () = tail(8)} and >—9'
®,(0) 2 {1 e Tltail(n) = head(0)}. .

)

Definition

A path in NV is a sequence of nodes vy, vy, -+ ,Vv|; | > 1s.t.
Vivijp e Efori=1,2,...,1 — 1.
Let P denote the set of paths in V.
Define &4(¢) 2 {nBr|head () = tail(8)} and >—9'
®,(0) 2 {1 e Tltail(n) = head(0)}. >H
The edges of G are ordered in a topological oy glr. " °
6

Definition: An embedding of G into NV is a

map B : I — P such that
1. start(B(6)) =s forl =1,2,...,k
2. end(B(n)) = start(B(0)) if n € ®4(0)

3. end(B(Gm)) =1.
Ori

Embedding-Edge LP

e What is the best time-sharing between the different
embeddings?

Embedding-Edge LP: Maximize A =) 5 X(B) subject to
1. Capacity constraints

) re(e)x(B) <c(e), e cE (1)

BeB

2. Non-negativity constraints

x(B) >0, VB (2)

rg(e) = # of times that network edge e of A is used in
embedding B.

Embedding-Edge LP

e A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
A

Embedding-Edge LP

e A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
A

e |B|is exponential in |V|. So this LP has exponential
complexity.

Embedding-Edge LP

e A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
A

e |B|is exponential in |V|. So this LP has exponential
complexity.

e We need to seek simpler solutions
e We can identify each edge of G to be a flow.

Embedding-Edge LP

e A protocol can be designed from any feasible solution of
the Embedding-Edge LP to achieve a computation rate of
A

e |B|is exponential in |V|. So this LP has exponential
complexity.

e We need to seek simpler solutions
e We can identify each edge of G to be a flow.

e We can thus explore an efficient Node-Arc LP based on
“flow conservation.”

Flow-conservation

e A complication: Flow can be destroyed or generated at
internal nodes.

Flow-conservation

e A complication: Flow can be destroyed or generated at
internal nodes.

e A destroyed flow of type 6, or 6,
generates a flow of type n of the same
volume.

Flow-conservation

e A complication: Flow can be destroyed or generated at
internal nodes.

A destroyed flow of type 6, or 6,
generates a flow of type n of the same
volume.

A flow generated at a node is assumed
to flow on a virtual self-loop at that
node. n

The flow in the self-loop contributes to
the incoming flow, but not to the
outgoing flow.

Flow-conservation

leX?: 1

 X1X2+X3

 X1X2+X3

fXxe_ 0.

fX=15

Flow-conservation

fxz15 fx=15

1

},

Node-Arc LP

Node-Arc LP: Maximize)\ subject to following
constraints. For any node v € V

~3
1. Functional conservation of flows: ?é\ /92
o, n~1
W+ Y - > &
ueN(v) ueN’(v) n %:g
VO € T\ {6} and V¥ € ® (). n~1

2. Conservation and termination of 6r:

0 0 -\ v=t
f \FI f I _
Z Z . otherwise

ueN(v) UEN’(v)

Node-Arc LP
3. Generation of 6, VI € {1,2,...,k}:

o _ A V=S5
w 0. otherwise

4. Capacity constraints

> (fue\, +f\,9u) <c(uv), Yuv € E.
ber

5. Non-negativity constraints

f6, >0,Yuv e EandVh e T
f0,>0,YueVandvderl
A>0.

Node-Arc LP — Embedding-Edge LP

e This is a similar to LP formulations in multi-commaodity flow.

Node-Arc LP — Embedding-Edge LP

e This is a similar to LP formulations in multi-commaodity flow.

e An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

Node-Arc LP — Embedding-Edge LP

e This is a similar to LP formulations in multi-commaodity flow.
e An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

¢ In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

Node-Arc LP — Embedding-Edge LP

This is a similar to LP formulations in multi-commodity flow.
An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

Atleast one flow 4, is completely removed in each iteration
of Extract-Embedding.

Node-Arc LP — Embedding-Edge LP

This is a similar to LP formulations in multi-commodity flow.
An algorithm Extract-Embedding converts a solution of
Node-Arc LP to a solution of Embedding-Edge LP.

In each iteration, Extract-Embedding extracts’ a non-zero
flow on an embedding or a nonzero redundant flow on a
cycle.

Atleast one flow 4, is completely removed in each iteration
of Extract-Embedding.

The algorithm has the overall complexity O(x2?|E|?).

The LP has O(«|E|) number of variables, O(x|E|) number
of non-negativity constraints, and O(x|V | + |E|) number of
other constraints.

Toward an efficient e-approximate solution

For multi-commodity flow, and more general packing LPs,
Garg and Konemann [1998] gave a primal-dual algorithm
to compute a solution which achieves at least (1 — ¢)
fraction of the optimal rate.

Our Embedding-Edge LP is also such a ‘packing LP’.

So, Garg-Konemann algorithm can be used for our
problem.

The algorithm uses an oracle subroutine that solves a
‘dual’ problem.

Toward an efficient e-approximate solution

Let I(e) be the weight of edge e. Define the weight of an
embedding B as

wi(B) = Y rs(e)l(e).

ecB

e The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.

Toward an efficient e-approximate solution

Let I(e) be the weight of edge e. Define the weight of an
embedding B as

wi(B) = Y rs(e)l(e).

ecB

e The oracle subroutine OptimalEmbedding(L) finds an
embedding with minimum weight for a given set L of edge
weights.

e We later give an efficient algorithm for doing this.

An efficient e-approximate solution

Algorithm: Algorithm for finding approximately optimal x and A

Input: Network graph N = (V, E), capacities c(e), set of
source nodes S, terminal node t, computation tree G = (2,),
the desired accuracy ¢
Output: Primal solution {x(B),B € B}
Initialize I(e) := d/c(e), Ve e E,x(B) :=0,VB € B;
while D(l) < 1do % D(I) =>_c(e)l(e)
B* := OptimalEmbedding(L);
e* := edge in B* with smallest c(e)/rg-(e) ;
X(B*) = X(B*) + c(e”)/rp- (€");
I(e) = I(e)(1 + el Ae(e)) ve € B*;
end

X(B) = X(B)/Iogl+e %7VB1

OptimalEmbedding(L): overview

e For each edge 6;, starting from 64, it finds a way to compute
; at each network node at the minimum cost possible.

e It keeps track of that minimum cost and also the
‘predecessor’ node from where it receives 6.

e If 6; is computed at that node itself then the predecessor
node is itself.

OptimalEmbedding(L)

e Computing 6; fori € {1,2,...,x} at the minimum cost at a
node u is equivalent to finding the shortest path to u from
sj. We do this by using Dijkstra’s algorithm.

e For any other i, the node u can either compute 6; from
®+(6;) or receive it from one of its neighbors.

¢ To take this into account, unlike Dijkstra’s
algorithm, we initialize the cost of computing
¢; with the cost of computing ®+(6;) at the
same node. The rest is similar to Dijkstra’s
algorithm.

e Finally the predecessors are backtracked t
from t to find the optimal embedding.

Complexity

e Overall complexity of OptimalEmbedding(L):
O(x(IE[+[V[log [V]))

e The number of iterations in the primal-dual algorithm is of
the order O(e*|E|log, . |E|).

e Thus the overall complexity of the primal-dual algorithm is
O (e *KIE[(IE[+ |V [log|V)logy .. [E]).

Extensions and Open Problems

Extensions
e Multiple trees for the same function.
e Multiple terminals and functions of distinct sources.
e Computing with a specified precision.
e Consider energy limited sensors.
Open problems

¢ An immediate open problem: The computation graph G is a
DAG and not a tree.

In perspective: Other setups for function networks

Wired/wireless networks: Graph or hypergraph Ui
i
Uu——mYV u
V3
Directed or undirected links \4
U@—@ v u@g—0\
flow < c(uv) total flow < c(uv)

block computation/coding vs. bit-wise computation
zero-error recovery vs. small-error recovery
correlated vs. independent sources

single terminal vs. multiple terminals

same vs. different functions at different terminals
fixed vs. random networks

Typical objectives

e For any given link capacities, what is the maximum rate (or
rate-region for multiple terminals) that is achievable? More
generally, rate-distortion trade-off?

e Assymptotic scaling laws for required communication
complexity per node

¢ Efficient encoding/decoding

Summary of other views

e In information theory: Small networks, correlated sources
with the objective of finding achievable rate-region and
rate-distortion.

e Scaling laws for randomly deployed networks: Does not
consider a fixed network.

e Network coding: internal nodes are allowed to mix received
data to construct outgoing data even for communication.

The big picture

Information

The big picture

The big picture

Flow for
functions

The End

The End

Thank you

The End
Thank you

Questions?

