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Abstract—We propose a strategy to combine the variance sta-
bilizing transform (VST), used for Poisson image denoising, with
the fast discrete Curvelet transform (FDCT). The VST transforms
the Poisson image to approximately Gaussian distributed, and
the subsequent denoising can be performed in the Gaussian
domain. However, the performance of the VST degrades when the
original image intensity is very low. On the other hand, the FDCT
can sparsely represent the intrinsic features of images having
discontinuities along smooth curves. Therefore, it is suitable
for denoising applications. Combining the VST with the FDCT
leads to good Poisson image denoising algorithms, even for low
intensity images. We present a simple approach to achieve this
and demonstrate some simulation results. The results show that
the VST combined with the FDCT is a promising candidate for
Poisson denoising.

Index Terms—variance stabilizing transform, fast discrete
curvelet transform, nonsubsampled contourlet transform, Poisson
denoising.

I. INTRODUCTION

Poisson images occur in many situations where image

acquisition is performed using the detection of particles, e.g.,

photons [1]. The signal-to-noise ratio (SNR) of such images is

signal dependent and varies across the image plane. Variance

stabilizing transforms (VST) such as the Anscombe VST [2]

offer a pragmatic solution for Poisson noise removal. The VST

stabilizes the variance of the Poisson image to a constant, and

the resulting image tends to homoskedastic Gaussian as the

intensity of the original image tends to infinity. This makes it

possible to employ Gaussian-based denoising methods, which

are, unlike Poisson denoising methods, well developed and

widely employed. After denoising, the estimated image can

be obtained by inverting the VST. A drawback of the VST is

that when the intensity level of the input image is very low

(i.e., at low SNRs), its performance deteriorates [3]. Multiscale

VSTs (MS-VST), proposed in [3], combine the VST with the

lowpass filters involved in various multiscale multidirection

(MS-MD) transforms such as wavelets. The lowpass filters

average out the noise to an extent thereby improving the

SNR. Moreover, the MS-MD transforms sparsely capture the

intrinsic geometry of an image. Due to these facts, MS-VST-

based Poisson denoising methods yield good performance.

In [3], MS-VSTs were developed for the wavelet, ridgelet

and first generation curvelet transforms [4], and the curvelet

was shown to yield the best performance. Recently, we have

proposed [5] an MS-VST Poisson image denoising algorithm,

based on the nonsubsampled contourlet transform (NSCT) [6].

We have shown that the NSCT, when combined with the

VST, yields excellent Poisson denoising performance for low

intensity images. Its performance is quite comparable to that of

the curvelet, and it outperforms the wavelet by a large margin.

The NSCT has less redundancy and computational complexity

than the curvelet.

In this paper, we propose a strategy to combine the MS-VST

with the second generation curvelet transform, specifically the

fast discrete curvelet transform (FDCT) [7]. The FDCT is far

less redundant than the NSCT. We apply our proposed FDCT-

based MS-VST to denoise Poisson images and demonstrate a

few preliminary results. We note that more experiments are

to be conducted to arrive at a complete conclusion on the

performance of the proposed method. However, the prelimi-

nary results show that the FDCT-based MS-VST is indeed a

promising candidate for Poisson noise removal.

This paper is organized as follows. Section II briefly

discusses the MS-VST. In Section III, we provide a brief

overview of the implementation of FDCT. The proposed

FDCT-based MS-VST is developed in Section IV. The steps

involved in Poisson noise removal by using the MS-VSTs is

outlined in Section V. Some simulation results are presented

in Section VI, and Section VII concludes the paper.

II. MULTISCALE VARIANCE STABILIZING TRANSFORM

Let X = (Xi)i∈Z2 , be an observed N × N Poisson noisy

image. Each pixel value Xi is an independent Poisson random

variable, i.e., Xi ∼ P(λi). The mean λi of the Poisson

variable Xi represents the true intensity of the i-th pixel, and

the variance σ2
i = λi of Xi can be considered as noise [1]. The

SNR at i-th pixel is λi, and therefore, it is intensity dependent.

The denoising problem aims to estimate the underlying true

intensity profile (λi)i∈Z2 of the image.

The performance of the VST is improved for low intensity

images by preprocessing the input image using a lowpass filter.

Let Y be the filtered Poisson image and h be the impulse

response of the filter, which is assumed to be of finite length

(FIR). Define τk =
∑

i(h[i])k, for k = 1, 2, . . ., and assume

that the image is locally homogeneous, i.e., λj−i = λ, for all
i within the support of h. The VST for a filtered image is



defined [3] as

T (Y ) , b · sign(Y + c)
√

|Y + c| , (1)

where sign is the signum function. With the constants b and

c defined as

b , 2
√

|τ1|/τ2 and c ,
7τ2

8τ1
−

τ3

2τ2
, (2)

it was shown in [3] that

T (Y ) − b · sign(τ1)
√
|τ1|λ

D
−−−−−→
λ→+∞

N (0, 1) (3)

and the rate of convergence of the variance of T (Y ) is

O(λ−2). Using this concept, the VST defined in (1) was com-

bined with the lowpass filters of various MS-MD transforms

so that the transform coefficients asymptotically approach

a Gaussian distribution [3]. A Poisson denoising algorithm

using the MS-VST typically consists of the following three

processing stages [3]:

1) Transformation: MS-VST is applied to the Poisson im-

age. The resulting coefficients are approximately Gaus-

sian distributed with constant variance. The variance

depends solely on the MS-MD transform used.

2) Detection: A statistical hypothesis test is used to detect

the significant coefficients in the subbands.

3) Estimation: Since the MS-VST is nonlinear, a direct

inversion is not possible. Therefore, the denoised image

is recovered using ℓ1 optimization techniques.

III. FAST DISCRETE CURVELET TRANSFORM

The curvelet transforms, first generation [4] as well as

second generation [8], provide a near-optimal sparse repre-

sentation for images having discontinuities along C2 (twice

differentiable) curves. Two separate digital implementation of

the second generation curvelets were proposed in [7]. They are

(i) using the unequispaced fast Fourier transform (USFFT) and

(ii) using frequency domain wrapping. Both implementations

are conceptually the same. The common steps involved in both

the implementations are outlined in Fig. 1. After computing

the two-dimensional (2-D) discrete Fourier transform (DFT)

of the image using the fast Fourier transform (FFT), curvelet

frequency windows at different scales and angles are applied.

By computing the 2-D inverse DFT (IDFT) of each windowed

output, we obtain the curvelet coefficients. The image can

be recovered without error from the curvelet coefficients by

inverting each step involved.

Compared to the first generation curvelets, the FDCT is

conceptually simpler, faster, and less redundant. The compu-

tational complexity of the FDCT is only O(N2 log N) for an

N × N image. Its redundancy is about 7.2, whereas the first
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Fig. 1: The data flow in the forward FDCT

generation curvelet can be as highly redundant as 16J + 1,
where J is the number of curvelet scales. Similarly, when

compared to the NSCT, the FDCT is less redundant and has

more frequency resolution and better directionality properties

[7].

The FDCT suffers from some drawbacks when used in

denoising applications. Since the FDCT is compact in the

frequency domain, it is more spread in the spatial domain.

In our denoising experiments we have observed that the non-

compactness of the curvelet functions introduces annoying

oscillations in the reconstructed images, when nonlinear de-

noising techniques such as thresholding are employed; this is

especially true when the SNR is very low. This phenomenon

has been reported by other researchers as well, and a number

of solutions — e.g., combine curvelet with other techniques

— have been proposed in the literature. More discussion on

this can be found in [9] and the references therein.

IV. MS-VST USING THE FDCT

The proposed scheme of combining the MS-VST with the

FDCT is depicted in Fig. 2. In this scheme, prior to applying

the 2-D DFT and FDCT windows, we decompose the image

into a set of lowpass components using a 2-D filter bank

having J channels. The first (J−1) channels of the filter bank
consists of 2-D lowpass filters. The passband of the filter in

the (J − j)-th channel is [−π/2j , π/2j ]2. The J-th channel

contains no lowpass filter. This arrangement decomposes the

input image into an oversampled dyadic lowpass pyramid.

Each lowpass output is stabilized to Gaussian by applying

the MS-VST as defined in (1)–(2). Subsequently, 2-D DFT

is applied to each lowpass band, and the FDCT windows of

different orientations corresponding to the 2(J−j)-th scale is

applied on the j-th lowpass component, for j = 1, 2, . . . J .
Taking the IDFT results in the detail coefficients of the FDCT.

The lowpass FDCT window is applied to the J-th channel, in

which there is no lowpass filter. This is done so that no error

is introduced in the approximation coefficients. Moreover, we

have chosen the proposed lowpass filter bank over the usual

iterative Laplacian pyramid in order to avoid the cumulative

errors in the passband due to iterative filtering. We note that

the lowpass filters on the front end are superfluous as far as the

FDCT is concerned, and they only facilitate the augmentation

of MS-VST to the FDCT. Each lowpass component is mul-

tiplied with only those FDCT windows, which correspond to

the associated scale. Therefore, the number of computations of

the FDCT remains the same as that of the original version. But

the overall number of computations increases because the 2-D

DFT is computed in each channel of the filter bank. This is J
times more when compared to the original FDCT algorithm.

However, the overall computational complexity remains the

same as O(N2 log N) for an N × N image.

From the discussion in Section II, it follows that the output

of each MS-VST block in Fig. 2 is approximately Gaussian

when the input is a Poisson image. Since the subsequent FDCT

structure consists only of linear highpass filters, it follows that

the FDCT coefficients are also approximately homoskedastic
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Fig. 2: Proposed FDCT-based MS-VST scheme
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Fig. 3: Variance of MS-VST FDCT
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Gaussian with zero mean. We have computed the variance

of the FDCT coefficients obtained by the proposed scheme.

We have used Monte Carlo simulations by giving the Poisson

noise as inputs to the filter bank shown in Fig. 2. We have

repeated this analysis for a range of low intensity images. The

results for different curvelet scales are plotted in Fig. 3, in

which the values of the variances are normalized to unity. It

shows that the variance of the MS-VST+FDCT coefficients

converge to a constant at low intensities. Also, because the

coefficients in the coarser scales are obtained from lowpass

filters with narrower passband, the SNR is improved more,

and hence they converge faster.

Lowpass filter design: The additional filters used will cause

errors in the FDCT coefficients and perhaps destroy its perfect

reconstruction property. This does not cause a serious prob-

lem in the denoising applications because, as we explain in

Section V, the FDCT coefficients obtained from the proposed

structure are only used to obtain a multiresolution support M
consisting of the locations of the significant FDCT coefficients.

The reconstruction is performed by ℓ1 optimization from the

noisy image directly, but by making use of M. Therefore, we

only try to minimize the errors in the FDCT coefficients. To

this end, we design linear-phase FIR filters by minimizing

the maximum error in the passband. Our approach can be

further justified as follows. Assume that we remove the MS-

VST block in our filter bank structure given in Fig. 2. The

resulting FDCT coefficients for an image X are given by

c(j, l, k) = c(j, l, k) + c∆(j, l, k) , (4)

where c(j, l, k) is the original FDCT coefficients of X ,

c∆(j, l, k) is the error introduced by the proposed structure,

and j, l and k represent the FDCT scale, orientation and

location, respectively. From [7], it follows that

c∆(j, l, k) =

∫
∆j(ω)X̂(ω)Uj(S

−1
θl

ω)e
i〈S−T

θl
,ω〉

dω . (5)

where X̂ is the 2-D discrete-time Fourier transform of X ,

ω = (ω1, ω2) is the 2-D digital frequency, Uj is the curvelet

window corresponding to the scale 2j , and S is the shear

matrix which determines the orientation of U in the frequency

domain. In (5), ∆j(ω) is the error between the passband

response of the j-th lowpass filter and its ideal value (i.e.,

unity). If |∆(ω)| ≤ ǫ, where ǫ > 0, then

|c∆(j, l, k)| = ǫ

∫
|X̂(ω)|Uj(S

−1
θl

ω)dω ≤ ǫMφj [0] , (6)

where φj is the curvelet function in the space domain cor-

responding to Uj and M is the maximum value of |X̂(ω)|.
From (6), we note that by making ǫ arbitrarily small, we

can minimize the error in the FDCT coefficients obtained by

using the proposed structure for absolutely summable (i.e.,

bounded in the frequency domain) images. Since we need a

passband which is supported inside a simple square in the 2-

D frequency plane, we first design a one-dimensional linear-

phase FIR filter and obtain the 2-D filter by simply taking

its tensor product. During the implementation, we make the

filter zero-phase by performing noncausal convolution. The

one-dimensional filters can be designed by using methods such

as Chebyshev equiripple approximation or maximally flat filter

design.

V. MS-VST DENOISING ALGORITHM

For Poisson image denoising using the MS-VST, we fol-

low the same steps as described in [3]. We first apply the

FDCT-based MS-VST for converting the Poisson image to

approximately Gaussian. Then we perform hard thresholding

to detect the significant FDCT coefficients for a prespecified

false detection rate (FDR) [10]. The locations of the detected

coefficients define an FDCT multiresolution support M [3]

for the image. The true intensity image is estimated by

minimizing the ℓ1 norm of the FDCT coefficients, reindexed

as a column vector, with the constraint that the resulting
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Fig. 4: MS-VST Denoising of Poisson image Barbara, size 256x256; (a) True image, intensity [0.9, 20]; (b) Poisson noisy

image; (c) MS-VST+Curvelet-I; (d) MS-VST+NSCT; (e) MS-VST+SNSCT; (e) MS-VST+FDCT.

image has nonnegative pixel values and the FDCT coefficients

belonging to M are preserved. We solve this problem by using

the hybrid steepest descent (HSD) algorithm [11], as adapted

in [3].

To measure the performance of the MS-VST algorithms we

use the normalised mean integrated squared error (NMISE),

defined in [3]. For an N ×N image, we compute the NMISE

over thirty noisy realizations as

NMISE =
1

30

30∑

n=1

N2∑

i=1

( λ̂in − λi )2/λi , (7)

where λ̂in is the estimate of λi from the n-th realization.

VI. RESULTS AND DISCUSSION

We demonstrate a few denoising results obtained by the pro-

posed MS-VST+FDCT for Poisson noisy images. We compare

our method with other state-of-the-art MS-VST methods. The

NMISE values for each method is tabulated in Table I; the

redundancy factor of the methods for the number of scales

and directions used are given inside the brackets. A few

important specifications of our experiments are: five scales and

{8, 16, 16, 32, 32} directions (from coarse to fine) for the MS-

MD transforms except the first generation curvelet, for which

four scales are used; the FDCT implementation based on

frequency wrapping; images of size 256×256 and intensity in

the range [0.9, 20]; and FDR = 10−3 and number of iterations

in HSD = 5 [3].

Figure 4 shows the results corresponding to the image

Barbara. The MS-VST+NSCT (Fig. 4d) yields better visual

performance by bringing out the high frequency details in the

image with very less artifacts. In addition, it has the least

NMISE value, as shown in Table I. Like the MS-VST+NSCT,

the proposed method (Fig. 4f) is also successful to bring

out the high frequency details, but its result contains a few

ringing artifacts. This is partly due to the lesser redundancy

and the inherent limitation of the FDCT to perform well in the

denoising applications, as discussed in Section III. In terms

of redundancy, FDCT is comparable with the semi-NSCT

(SNSCT) (Fig. 4d), which is a semi nonsubsampled version

of the NSCT [5], [6]. The NMISE obtained for our method

is better than that for the SNSCT. Similarly, Fig. 5 shows the

results obtained for the satellite image of the saturn rings1. For

this image, the performance of our method comes close to the

other methods. In fact, the NMISE is very close to that of the

NSCT and better than that of the SNSCT. For both the images,

Barbara and saturn rings, the proposed FDCT method yields

performance comparable with the first generation curvelets.

While redundancy is favourable for denoising applications,

the fact that our method performs as closely as the other state-

of-the-art methods but with lower redundancy proves that it is

a potential candidate for Poisson denoising. We believe that

using a hybrid approach of combining the FDCT with other

methods [9] will expand its potential use greatly.

1Courtesy NASA/JPL-Caltech. File name: PIA01531.
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Fig. 5: MS-VST Denoising of Poisson image Saturn, size 256x256; (a) True image, intensity [0.9, 20] (Courtesy NASA/JPL-

Caltech); (b) Poisson noisy image; (c) MS-VST+Curvelet-I; (d) MS-VST+NSCT; (e) MS-VST+SNSCT; (f) MS-VST+FDCT

TABLE I: NMISE for different MS-VST methods
Method (redundancy) Barbara Saturn

MS-VST+Curvelet-I (65) 0.2035 0.2413

MS-VST+NSCT (105) 0.1919 0.2671

MS-VST+SNSCT (6) 0.2424 0.2713

MS-VST+FDCT (7.2) 0.2274 0.2667

MS-VST+Wavelet (16) (results not shown) 0.3057 0.3327

VII. CONCLUSION

We have presented an approach to combine the variance

stabilizing transform (VST) with the fast discrete curvelet

transform (FDCT), which can be used for Poisson image

denoising. This method transforms the denoising problem from

Poisson to Gaussian domain. Our approach to combine the

VST with the FDCT is simple and straight forward, and

slightly increases the number of computations in the FDCT.

However, the overall computational complexity remains the

same as that of the FDCT. Results of our Poisson denoising

experiments promise that the combination of VST with FDCT

is a potential candidate for future explorations.
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