Some Design Considerations for a
Mobile Payment Architecture

Praveen Chandrahas, Deepti Kumar, Ramya Karthik,
Timothy Gonsalves, Ashok Jhunjhunwala and Gaurav Raina
Department of Computer Science and Engineering
Indian Institute of Technology Madras, Chennai 600 036, India
Email:{chandrah,gaurav } @cse.iitm.ac.in, {deepti.kumar,ramyakar} @ gmail.com,
tag@lantana.tenet.res.in, ashok @tenet.res.in

Abstract—The rapid proliferation of mobile phones now pro-
vides an opportunity to harness their potential towards financial
transactions. One form of such financial transactions is mobile
payments. Our focus, in this paper, will be on certain design
considerations for a mobile payment architecture.

For widespread adoption, interoperability is a key concern. We
first outline a previously proposed architecture, which supports
interoperability. The design of this architecture requires the user
to know only the beneficiary’s mobile number in order to initiate
a mobile payment. This is restrictive in the sense that only one
bank account can be linked to a mobile number. To enhance
flexibility it would be desirable, especially for merchants, to be
able to link multiple bank accounts to a single phone number.

We propose an alternate and enhanced design that allows the
flexibility to link multiple bank accounts while also allowing the
transactions to be conducted with just the mobile number.

We evaluate and compare these two designs on various
criteria. The details of implementation issues, advantages and
limitations are presented. The analysis is a step towards the
evaluation process of various design choices for mobile payment
architectures.

I. INTRODUCTION

A mobile payment can be defined as the transfer of money
from one entity to another entity through the exchange of
information via a mobile device. Mobile devices may include
mobile phones, PDAs, wireless tablets and any other device
that may connect to mobile telecommunication network and
make it possible for payments to be made. The mobile phone
helps in the exchange of information required for the actual
transfer of money [3] [4].

For any mobile payment architecture to be widely adopted,
the following challenges need to be overcome: (1) Interoper-
ability, (2) Usability, (3) Simplicity, (4) Universality, (5) Secu-
rity, (6) Privacy, (7) Trust, (8) Cost, (9) Speed and (10) Cross-
border payments [4]. The regulatory environment that we focus
on is where every mobile payment transaction goes through the
bank accounts of the two parties involved in the transaction;
in essence, the flow of the transaction can be described simply
as customer-bank-bank-customer. The mobile phone acts only
as an instrument to access the bank account.

It is natural to expect that customers can have very different
telecommunication service providers, and will be registered
with different banks. Thus interoperability, which is defined
as the mechanism which allows a mobile payment to be

made irrespective of the bank and/or the service provider to
which the customers belong to, becomes an integral aspect in
ensuring the widespread adoption of mobile payments.

An architecture was proposed previously in [1] [2], which
addresses the concern of interoperability. A key limitation of
the design of the architecture is that it is not flexible enough to
accommodate multiple bank accounts to be mapped to a single
mobile number. The main objective of our work is to consider
an alternate design for the architecture which addresses this
issue. We also enumerate the challenges faced by our proposed
design choices and then proceed to give solutions to those
challenges.

The rest of the paper is outlined as follows. In section
I, we give a brief background of the previously proposed
architecture and highlight its advantages and disadvantages. In
section III, we propose an alternate design for the architecture
which takes into consideration some of the issues we raised.
In section IV, we conclude with our key contributions.

II. A PREVIOUSLY PROPOSED ARCHITECTURE

We now recapitulate the architecture proposed in [1]; also
see [2] for further reference. This architecture allows the
mapping of a mobile number to a single account number.
It enables a customer to initiate a mobile payment just by
knowing only the mobile number of the other person. A
skeletal structure of the architecture is represented in Figure
1.

The architecture introduces the term Mobile Payment
Provider (MPP). An MPP can be a third-party who provides
an interface between the end-user and the Bank. The person
initiating the transaction is called the customer and the person
who receives it is called beneficiary. A customer initiates
a mobile payment by entering the mobile number of the
beneficiary. This information is sent across from the Telecom-
munication Service Provider (TSP) to the MPP which in-turn
communicates the same to the customer’s bank. After the
appropriate processing at the customer’s bank, the transaction
is sent to the beneficiary’s bank. An important step here is to
identify the beneficiary’s bank. This can be accomplished by
storing all the mapping data in a Central Repository.

Every bank is assigned a unique identification number,
referred to as the bank id. The information that has been passed

Bank Bl

i)

: 7
Customer| 1 TSP T1 | IFF L1
T B 8
s -t 3’ 4 .
[Beneficiary "" TIF T2 T MFPP M2
e
=

Bank B2

Fig. 1. Previously Proposed Architecture

to the central repository contains the beneficiary’s mobile
number. A search is performed on the central repository to
find the bank id of the beneficiary after the customer’s bank
authenticates the transaction. The search key is the mobile
number of the beneficiary. Once the beneficiary’s bank id is
found, the transaction is then routed to the beneficiary’s bank
where further processing of the transaction takes place.

A. Evaluation

This architecture is the simplest to use from the end-user’s
point of view. This is because the only thing the customer has
to know is the mobile number of the beneficiary.

The cost of a transaction depends the additional network
infrastructure required by the architecture. The architecture
requires that a central repository be built for the purpose of
routing. And banks should bear the cost of the MPP. Other
than these factors, the architecture makes use of the existing
telecommunication network infrastructure.

B. Limitations

One key limitation is that it restricts a mobile number
from being mapped to multiple bank accounts. The design
maximises usability while restricting flexibility. The design
is also insensitive to mistakes made by the customers while
entering the mobile number of the beneficiary.

III. AN ALTERNATE DESIGN

In the light of the above discussion on the limitations of the
previously proposed design, we propose a new design which
addresses the concerns raised in the previous section. The main
aim of the proposed design is to allow multiple accounts to be
linked to a single mobile number and to provide for a safety-
net which can act as a safeguard when a customer enters an
incorrect mobile number.

A. Multiple Accounts

The additional feature of multiple accounts comes at the cost
of restricting simplicity for the end-user. In order to allow for
multiple accounts, we introduce the term ‘Mobile Account Se-
lector’ (MAS). When a customer registers with a bank for mo-
bile payments, the bank assigns a 3-digit number. This number,

Customer Beneficiary
Beneficiary’'s Mobile number,

1 MAS and amount Notification | 6
Customer’s 3 » Central 4 » Beneficiary’s
Bank " Switch Bank

8 1
2 5
Customer’s Beneficiary’s
Account Account
Fig. 2. Proposed Design Changes

which we call the MAS, uniquely identifies an account across
any bank when used in combination with the mobile number.
Every account which is linked to a mobile number can be
uniquely identified by <mobile_number, MAS> combination.
In order to satisfy this condition of uniqueness, we have to
impose certain restrictions on MAS which are discussed in
Section III-D.

A mobile payment is initiated by entering the beneficiary’s
mobile number, beneficiary’s MAS and the amount of money
to be transferred. This information is first sent to the cus-
tomer’s Bank/MPP. After authentication, the transaction is sent
to the central repository, which we call the central switch.
The switch has a collection of the records pertaining to
<mobile_number, MAS, bank_id>. The switch does a search
in its database for the <mobile_number, MAS> combination.
On a successful search, the bank id is found and the transaction
is routed to the beneficiary’s bank where further processing of
the transaction takes place.

Every bank needs to maintain a database mapping the
<mobile_number, MAS> combination with the appropriate
account number. This database corresponds only to the ac-
counts of that particular bank. When the information is sent
across from the central switch, the beneficiary bank needs
to do a look-up on this database to find the actual account
number to which the credit should take place. The proposed
architecture is captured in Figure 2.

The basic objective of the design is to maximise flexibility.
In order to maximise both usability and flexibility, we intro-
duce the idea of a default account.

B. Default Account

In order not to affect the usability when a customer prefers
not to have multiple accounts, a customer can enable a default
account. When a customer registers for mobile payment with
a bank, they can choose to specify a particular account as the
default account. This allows transactions to be done without
entering the MAS as well. When a transaction is initiated by
entering only the mobile number of the beneficiary, the central
switch checks to see if a default account has been registered
with the mobile number. If a default account is registered, then
the switch routes the transaction to the appropriate bank. Thus,

the usability of the architecture is not affected significantly
when a subscriber choses to have a default account linked to
their mobile. A customer can choose to select a default even if
multiple accounts are linked to their mobile number. The MAS
can then be used only when money has to be transferred to
an account other than the default account. A slight change in
the implementation of the central switch is required in order
to implement this.

C. Issues

The proposed design throws up two major implementation
challenges. The first of these challenges is the generation of
MAS. The combination of <mobile number, MAS> should
uniquely identify an account number across the banks. MAS
also serves other purposes which are enumerated in Sec-
tion III-D. The second challenge is the storage mechanism for
building the central switch. The central switch should facilitate
extremely fast look-ups while facing certain constraints. These
issues are addressed in the subsequent discussion.

D. MAS Generation

Requirements
In order to satisfy the goals, it is imperative that we put some
constraints on the generated number. These include, but are
not limited to the following:

Mandatory Constraints

e The MAS should uniquely identify an account number
when used in conjunction with a Mobile Number.

o A large percentage of customers should not be holding
the same MAS. This follows from the goal of the MAS
to act as a second safety net. In case a large percentage of
the customers do hold the same MAS, the probability of
an incorrectly entered mobile number leading to a fund
transfer to an unintended party will increase significantly.

E. Some Options for Generation of MAS

1. Random Number Generator (RNG)
(a) Description:
This method makes use of a random number generator for
generating the MAS. The steps in the algorithm given below
are iterated until a suitable MAS is generated.
(b) Algorithm

1) MPP/Bank generates a 3-digit random number, R, in the
range [000,999] using an RNG.

2) Send the generated number along with the Mobile Num-
ber of the customer and the current account number to
the central switch.

3) Central switch checks the count of the number of
accounts already mapped to the mobile number. If the
count equals the value of 1000, then the request is
rejected specifying the same reason.

4) Else, central switch checks for the number R in the list
of MAS’s associated with the current mobile number.

5) If number R is already present, inform the MPP/Bank
of the same and go to step (a).

6) Else, designate the number R as the MAS of the current
account and intimate the same to the MPP/Bank.

(¢) Constraint Satisfaction
Both the constraints are guaranteed.
(d) Efficiency
The efficiency will come down when trying to generate MAS
for a mobile number which already has a large number of
accounts linked to it.

2. Incremental Approach
(a) Description
The incremental approach eliminates the drawback of RNG
method. This approach incorporates elements of randomness
and determinism to generate MAS. The method is best illus-
trated by the Algorithm 1 in Section-III.
(b) Algorithm

Algorithm 1 Generating MAS using the Incremental Ap-
proach
1: Customer approaches MPP/Bank for mobile payments
2: MPP/Bank sends a request to Central switch; Request
contains Mobile Number and Account Number of the
customer

3: Central switch:
4: if Customer already registered for mobile payments then
5 if count < 1000 then
6: if T = 0 then
7 if L+1 = F then
8 L+~ @L+1
9: increment counter
10: return L as MAS
11: else
12: T < 1 {Counter is about to be tipped after this
operation }
13: Search for free slots
14: Increment Counter
15: return First Free Slot as MAS
16: end if
17: else
18: Search for free slots
19: Increment Counter
20: return First Free Slot as MAS
21: end if
22: else
23: Maximum number of accounts reached;
Request rejected
24: end if

25: else

26: F' < Random 3-digit number
27: Increment Counter

288 L+ F

29: end if

(¢) Constraint Satisfaction
Satisfies both.
(d) Efficiency

The efficiency is not affected by the number of accounts
already linked. The general performance is very good.

FE. Storage Mechanisms

The architecture requires that the transaction be routed to
the appropriate bank based on the <mobile_number, MAS>
combination received by the central switch. The main bottle-
neck for performance arises during the look-up process. As
the number of subscribers keep increasing, the need for a fast,
reliable and robust look-up system is much more ominous.
We present some methods and highlight the advantages and
disadvantages, cost and performance issues associated with the
methods that we propose.

1. Database Based
We chose MySQL as it offers the flexibility to let the storage
engine be selected depending on the specifications. The
simulation that was run to collect statistics consisted of
200 million records. The tests were conducted on a system
running on Intel Core-2 processor with 4-GB RAM and
Linux based operating system. The following set of queries
were run to obtain the search times:

e Query for a random mobile number, which exists in the
database, without specifying the MAS.

¢ Query for a random mobile number, which exists in the
database, along with the MAS.

¢ Query for a random mobile number, which does not exist
in the database, without specifying the MAS.

e Query for a random mobile number, which does not
exist in the database, along with the MAS.

MySQL Storage Engines
(a) MyISAM
MyISAM has built-in full-text search which allows for faster
search. Building indexes on the appropriate columns leads to
an increase in performance, though it is a slight trade-off with
memory requirements. In fact, as the results in Table I indicate,
building an index results in a substantial performance gain over
a non-indexed table.

A significant difference in query times can also be
found when a look-up is performed based on the
<mobile_number, MAS> combination rather than just the
mobile number. Building an index over these two columns,
though resulting in increased disk usage, will lower the search
times by an order of magnitude.

(b) MEMORY (previously Heap Engine)

The MEMORY storage engine is designed to be an in-memory
storage for extremely fast access and low latency. MEMORY
engine allows extremely fast look-ups by creating a hash of
the data. With the data being static, there are better chances of
coming up with a perfect hash function which allows constant
order look-up of data. Creating an index will not affect the
performance of MEMORY engine as much as the MyISAM
engine, as evidenced in Table II.

(¢) Clustered Database

Both (a) MyISAM and (b) MEMORY above, fare well in
terms of performance. However, in order to meet the criteria
for an optimal central switch, reliability and scalability are
also essential. This can be achieved by using a Clustered
Database. Different storage nodes can be configured to run
as a single cluster. The cluster architecture is a shared-
nothing architecture which means that there is no single point
of failure. The data nodes can be configured to be replicas of
each other ensuring high reliability. Scalability follows from
the same principles which allows reliability. Adding additional
data nodes leads to increased capacity. Performance can be
maintained at the same level even after the increased disk-
usage by adding in more SQL servers. The load can be
balanced among the SQL servers which in-turn, distribute the
load among the data nodes. In the light of the above discussion,
we summarise the advantages and disadvantages of databases
as follows:

Advantages

« Database based storage solutions are cheaper compared
to hardware solutions like Content Addressable Memory
(CAM). The trade-off is between performance and cost.

« Reliability and Scalability are easy to achieve when using
a database based storage mechanism.

Disadvantages

o Databases are not optimised to store one-to-many re-

lationships. This can adversely impact the performance
when there are a large number of one-to-many relations.
This is the typical scenario in the proposed architecture
for mobile payments. When a mobile number is linked to
x number of accounts, the database will have x unique
records for the same mobile number.
One alternative would be to use a hash table. The
mobile number can be hashed using an appropriate hash
function. To minimise the effect of collisions, and to
enable multiple accounts to be searched in a cost-effective
manner, separate chaining [7] could be used. Instead of
the traditional list used in separate chaining, we propose
an alternate data structure based on a tree.

2. Tree Based
The main aim here is to avoid comparing the same mo-
bile number multiple times once it is known that the given
pattern does not match the mobile number. The Abstract
Data Type (ADT) for the tree, in pseudo ‘C’, is shown in
Algorithm 2.

Though the ADT is based on a Binary Search Tree, any
self-balancing tree, such as Red-Black trees [8] or AVL
Trees [9], can be used. The MAS associated with a mo-
bile number is stored in a double-dimensional array which
also holds the corresponding bank id. The search for a
<mobile_number, MAS> combination will first lead to a
binary search, findNode, for the mobile number. Once the mo-
bile number is found, the node containing the mobile number
is passed to another function along with the MAS from the
original search pattern. This function, which we call findBin,

Mobile No. | Mobile No. + MAS | Non-Existent Mobile No. | Non-Existent Mobile No. + MAS
With Index 0.04s 0.05s 0.02s 0.03s
Without Index 2.35s 3.27s 2.54s 2.68s
TABLE T
QUERY TIMES FOR MYISAM STORAGE ENGINE
Mobile No. | Mobile No. + MAS | Non-Existent Mobile No. | Non-Existent Mobile No. + MAS
With Index 0.03s 0.06s 0.03s 0.04s
Without Index 1.15s 1.27s 1.54s 1.68s

TABLE IT
QUERY TIMES FOR MEMORY STORAGE ENGINE

will search the double-dimensional array for a match with the
MAS from the original search pattern. Once a match is found,
the corresponding entry for the bank id is returned.

Algorithm 2 Tree Abstract Data Type

struct node{
struct nodex left;
struct nodex right;
int mobile_number;
int **mas;}

search Function

search(mobile_number,int mas)
struct node x x < findNode(int mobile_number);
return findBin(z ,mas);

findNode Function
findNode(int)

return struct node * z
bile_ number = =z

such that z — mo-

findBin Function

findBin(struct nodex , mas)
return z.mas where z.mas = mas

3. Tree Based on Data Nodes

If the tree-based data structures are used without a hash table,
the aforementioned Tree Based method can be further refined
by grouping together, in bunches, the mobile numbers. A
group of mobile numbers can be formed after taking into
account the way the mobile numbers are distributed. In a
typical scenario where there are a large number of mobile
users, grouping the mobiles based on the first 4 digits of the
mobile number might serve the purpose. We call these groups
bins. Based on the number of bins formed, these bins can now
be arranged in a tree structure. If the number of bins is smaller
than a certain threshold value, then they can be arranged in
an n-ary tree. The threshold value depends on the number of
bins. Varying the number of mobiles per Bin and the number
of Bins, different levels of performance can be obtained.

IV. CONCLUSIONS

In the design of architectures for mobile payments, there is a
potential tussle between usability and flexibility. In this paper,
we outlined a design option that allows for the flexibility to
have multiple bank accounts linked to a single mobile phone
number.

The proposed architecture complies with the major issue of
interoperability; however, it puts a major fraction of the load
on a central switch. The details of the implementation issues,
the advantages and the limitations were analysed from various
perspectives.

When real pilots are conducted, and we get real implemen-
tation data, then that may further bring to light the design
trade-offs in mobile payment architectures. Currently, a pilot
is under way in India with several banks.

ACKNOWLEDGMENTS

The authors would like to acknowledge funding by the
Department of Information Technology, Government of India
for the project entitled ‘Mobile Payment Certification Lab’.
Additionally, the Technology Committee members of the Mo-
bile Payment Forum of India are acknowledged for their role in
the development of the Interoperability Standards for Mobile
Payments.

REFERENCES

[1] Deepti Kumar, Timothy Gonsalves, Ashok Jhunjhunwala and Gau-
rav Raina “Mobile payment architectures for India,” National Conference
On Communications, 2010.

[2] Deepti Kumar “Mobile Payments: Interoperability and Implementation,”
M. S. thesis, Indian Institute of Technology Madras, India, 2009.

[3] Y. A. Au and R. J. Kauffman “The economics of mobile payments:
Understanding stakeholder issues for an emerging financial technology
application,” Electronic Commerce Research and Applications, 2007.

[4] S. Karnouskos and F. Fokus “Mobile Payment: a journey through ex-
isting procedures and standardization initiatives,” IEEE Communications
Surveys and Tutorials, pp. 44—66, 2004.

[5] Cellular Operators Association of India, Subscriber Figures for 2009.
Available at: http://www.coai.com/statistics.php

[6] http://www.economist.com/node/14505519

[7] Paul E. Black, “Separate Chaining,” U.S. National Institute
of Standards and Technology, 2010. [Online]. Available at:
http://xw2k.nist.gov/dads/HTML/separateChain-
ing.html. [Accessed Nov.3, 2010]

[8] Leonidas J Guibas and Robert Sedgewick “A Dichromatic Framework
for Balanced Trees,” Proceedings of the 19th Annual Symposium on
Foundations of Computer Science, 1978.

[9] Adelson-Velskii, G. and E. M. Landis “An algorithm for the organization
of information,” Proceedings of the USSR Academy of Sciences, vol. 146,
pp. 263-266, 1962.

