
NLHB : A Light-weight, Provably-secure Variant of
the HB Protocol Using Simple Non-linear Functions

Mukundan Madhavan
Electrical Engg. Department,

IIT Madras.
Email: mukundanm@gmail.com

Andrew Thangaraj
Electrical Engg. Department,

IIT Madras.
Email: andrew@iitm.ac.in

Kapali Viswanathan
HP Labs India, Bangalore.

Email: kapali@hp.com

Yogesh Sankarasubramaniam
HP Labs India, Bangalore.

Email: yogesh@hp.com

Abstract—In this paper, we propose a light-weight provably-
secure authentication protocol called the NLHB protocol, which
is a variant of the HB protocol [6]. The HB protocol uses the
complexity of decoding linear codes for security against passive
attacks. In contrast, security for the NLHB protocol is proved by
reducing the provably hard problem of decoding a class of non-
linear codes to passive attacks. We demonstrate that the existing
passive attacks([10],[3]) on the HB protocol family, which have
contributed to considerable reduction in its effective key-size,
do not work against the NLHB protocol. From the evidence,
we conclude that smaller-key sizes are sufficient for the NLHB
protocol to achieve the same level of passive attack security as the
HB Protocol. Further, for this choice of parameters, we provide
an implementation instance for the NLHB protocol for which
the Prover/Verifier complexity is lower than the HB protocol,
enabling authentication on very low-cost devices like RFID tags.

Keywords: HB protocol, LPN problem, Secure and Efficient
Authentication Protocol, Passive attacks, RFID tags.

I. INTRODUCTION

The HB [6] protocol is a low-complexity RFID authentica-
tion algorithm whose security is based upon the hardness of
the “Learning Parity in Noise” (LPN) problem [1], which is
known to be NP-Hard. Cryptanalysis of the HB authentication
protocol has resulted in efficient solutions to the LPN problem.
Notable among these are the LF2 algorithm [10] and the
algorithm proposed by Carrijo et al. [3]. These new solutions
have significantly reduced the effective key-size of the HB
protocol family that depends on the hardness of decoding
linear codes for security against passive adversaries.

In this paper, we define and consider the UNLD problem,
which is a decoding problem for a specific class of non-linear
codes. We prove hardness of UNLD by reducing the LPN
problem to the UNLD. Following this, we propose the NLHB
protocol, which is a carefully constructed variant of the HB
protocol. Security of NLHB against passive attacks is proved
by reduction of UNLD to the passive attacks.

The basic idea behind the NLHB protocol is the use of
a carefully-chosen non-linear Boolean function on the linear
parities generated in the HB protocol. The use of the non-linear
function considerably weakens the effectiveness of passive
attacks like LF2 [10] that depend on the linearity of the
parities. Therefore, key efficiency is higher in NLHB when
compared to HB.

For implementation, we demonstrate a certain quadratic
form chosen from the general family of functions that we pro-
pose for the NLHB, which presents a specific low-cost candi-
date for the protocol. Further, we show that the Prover/Verifier

complexity of NLHB protocol can be lower than that of the
HB protocol because of the use of smaller keys.

In summary, the main contribution of this paper is a low-
cost, provably-secure extension of the HB protocol through
the use of simple non-linear functions on parities. Because
of the non-linearity, the proposed NLHB protocol has better
resistance to known passive attacks on the HB family resulting
in higher key efficiency and cheaper implementations.

The paper is organized as follows. In Section 2, we give a
brief introduction on the HB protocol, related security models
and the LPN problem. In Section 3, we describe the UNLD
problem and prove its NP-Hardness. This is followed by a
description of the NLHB protocol and its security proofs.
Section 4 contains discussions on the resistance of NLHB to
passive attacks and its Prover complexity. Section 5 concludes
the paper.

II. THE HB PROTOCOL LITERATURE

A. HB Protocol

The HB protocol is a symmetric-key authentication pro-
tocol. The Prover and Verifier share a random k-bit secret
key s. The protocol has two public probability parameters
ε, ε′ ∈]0, 1

2 [such that ε < ε′. To authenticate, the Verifier
challenges the Prover with a random k×n matrix, to which the
Prover responds with z = sA+v. Here, the bits of the vector
v are all i.i.d Bernoulli random variables with parameter ε,the
multiplication between the vector s and A is over the binary
field GF (2)and + denotes XOR addition. The response vector
z is a n-bit vector and the Verifier responds with “Accept” iff
d(z, sA) ≤ ε′n, where d(.) denotes Hamming distance. This
process, which constitutes one authentication session is shown
in Figure 1.

Secret Shared s

Prover Verifier
A←−−−−−−− ChooseA ∈ {0, 1}k×n

z1×n = sA+ v
z−−−−−−−→ “Accept” iff d(z, sA) ≤ ε′n

Fig. 1. Parallelized version of the HB protocol

The parameters ε,ε′, and n are fixed so that both the proba-
bility of rejecting an honest Prover as well as the probability of
positively authenticating an attacker giving random responses
are negligible ([10], Figure 2). The HB Protocol has been

proven secure in the Passive attack model which is defined
below.

Definition 1 (Passive attack model ([7],[9])): In this
model, the adversary algorithm is two-phased. In the first
phase (called the query phase), the adversary has access to
the transcripts from q authentication sessions between an
honest Prover and Verifier. In the second phase (called the
cloning phase), the adversary tries to impersonate an honest
Prover to the Verifier.

B. The LPN Problem and Passive Attacks

Definition 2 (LPN Problem [7]): Let s be a random binary
k-bit vector. Let ε ∈]0, 1

2 [be a constant error parameter. Let A
be a random k×n matrix, and let v be a random n-bit vector
such that wt(v) ≤ εn, where wt(v) denotes the Hamming
weight of v. Given A, ε and z = (sA)+ v, find a k-bit vector
s′ such that d(z, s′A) ≤ εn.
For large n, this is equivalent to finding the vector s. The
LPN problem has been proven to be both NP-Hard [1] and
average-case hard [6]. The LF2 algorithm [10], which was
proposed after the HB protocol, is currently the best-known
algorithm for solving the LPN problem. The LF2, which is
an improvement over the BKW algorithm [2] requires far
fewer challenge-response pairs and lesser complexity than the
BKW algorithm. The key idea behind the LF2 algorithm is
to do column additions to the query matrix (and adding the
corresponding response bits) so that the resulting columns are
all zero in certain row positions, making the corresponding
key-bits irrelevant to the matrix product sA. Then the re-
maining key-bits are found through exhaustive search in the
diminished key-space (that does not contain the irrelevant bits).
This process is repeated, doing exhaustive search over various
subsets of the key-bits, until the whole secret key is found. A
second new passive attack effective at low key-sizes and low
noise-probabilities was also proposed by Carrijo et al. [3]. This
attack tries to pick noise-free bits from the response vector and
find the key through Gaussian elimination on the system of
equations formed from these bits alone. Both attacks heavily
depend on the Prover’s response being a noisy codeword of
the linear code generated by A.

As a consequence of these attacks, a LPN instance using as
many as 512 bits of secret can be attacked with a complexity
of just 280 operations (as opposed to 2512).

The main idea in this paper is to replace the linear parity
generation part sA in the HB protocol with a non-linear
version f(sA) for a suitable public function f . The following
characteristics are desirable for such a function f :

1) The public function f must allow for security proofs
through reduction of hardness of decoding problems to
the passive attacks.

2) The function f must be simple enough to implement on
low-cost devices.

3) The function f must provide better resistance to known
passive attacks that solve the LPN problem.

In the next section, we describe a specific class of non-linear
Boolean vector functions and discuss some of its properties
that will be used in the security reductions. We discuss
the other characteristics like implementation-cost and passive
attack resistance in later sections.

III. THE UNLD PROBLEM AND THE NLHB PROTOCOL

A. The Function f

Let D and p be positive integers such that D = n − p (n
is as described in the HB protocol). The NLHB function f is
constructed as follows. Each bit yi; i ∈ [1, .., D] of the output
y = f(x);y ∈ {0, 1}D,x ∈ {0, 1}n will be computed as

yi = xi + g([xi+1, .., xi+p]), (1)

where xi are the n-bits of x and g : {0, 1}p ⇒ {0, 1} is a
Boolean function containing only non-linear terms. Below, we
list some important properties for this class of functions.

1) f : {0, 1}n ⇒ {0, 1}D
2) f is a non-linear function.
3) For uniformly distributed x ∈ {0, 1}n, f(x) is uniformly

distributed in {0, 1}D.
A proof of Property 3 is provided in Appendix A. As a specific
example, the function

yi = xi + xi+1xi+2 + xi+2xi+3 + xi+3xi+1, 1 ≤ i ≤ D (2)

is a part of this function family for p = 3 (i.e D = (n− 3)).
As we can see, using functions like the one in Equation 2 in a
protocol requires very low additional complexity(only 3 AND
and 3 XOR gates here) and can easily be accomodated into any
cheap device like RFIDs. In the next section, we describe how
this function family can be used to create a robust protocol and
prove the protocol’s security for any given f in this family.
In later sections, we use our specific candidate to demonstrate
that the new protocol has increased passive attack resistance
while still maintaining low implementation complexity.

B. UNLD Problem

Suppose Ak×n is the generator matrix of a linear code. Then
all vectors of the form sA are codewords of this code. When
we apply the function f to these codewords, i.e, we compute
f(sA), the output vectors {f(siA)}2ki=1 can be viewed as a
non-linear code. We now define the UNLD problem, which
(in words) is the problem of decoding the class of non-linear
codes defined by f and A as {f(siA)}2ki=1.

Definition 3 (UNLD Problem): Let s be a random k-bit
binary vector. Let ε ∈]0, 1

2 [be a constant error parameter. Let
A be a random k × n binary matrix and let v be a random
D-bit vector such that wt(v) ≤ εD, where wt(v) denotes the
Hamming weight of v. Given A, ε and z = f(sA) + v, find
the k-bit vector s.

We prove the hardness of the UNLD problem by reducing a
random instance of the LPN problem to the UNLD. To show
the reduction, we assume an existential algorithm X that can
solve the UNLD problem. We construct an algorithm S, which
can solve a random LPN instance, when given access to X .

Theorem 1 (LPN reduces to UNLD): Let A be a random
k×n matrix, v′ be a (n−p)-bit Bernoulli noise vector, and s
be a random k-bit vector. Suppose there exists a probabilistic
polynomial-time (PPT) algorithm X with input 〈A,y =
f(sA)+v′〉 that can output s with probability atleast δ. Then,
there also exists a PPT algorithm S that can solve a random
LPN problem instance 〈Gk×n′ , z = mG + v〉 for randomly
chosen m, Bernoulli noise vector v and n′ ≤ (n−1)

p , k < n′

with probability at least δ.

Proof: Let z = [z1, ..., zn′] and v = [v1, ..., vn′] be the
constituent bits of the vectors described above. The algorithm
S, having access to algorithm X works as follows to solve a
random LPN instance 〈G, z〉 passed to it.

1) Pick ri; i ∈ [1, n′−1]; ri ≥ (p−1),such that
∑n′−1
i=1 ri =

n− p− n′.
2) Insert ri zeros between bit zi and zi+1 of z. This gives

the vector y(n−p) = [z1, 0..0, z2, 0..0, z3, 0.....0, zn′].
3) Similarly insert ri columns of zeros in between columns

i and i + 1 of G to get the matrix A. Also insert p
columns of zeros after the last column of A. Now, the
dimension of A is k × n and A is of the form A =
[g100..0g200..0.....gn00..0], where gi are the columns
of G.

4) Pass 〈A,y〉 to X and get back m′.
5) Return m′ as the estimate of the LPN secret m.

Analysis: Consider the vector x = mA. We can see that
x = [x100..0x200..0x300.0....xn00..0], where x1, x2, .., xn
are the bits of x = mG. We also see that, since g is a function
with only non-linear terms (i.e each term in g is some kind
of product of its input bits) and ri ≥ (p− 1), the vector f(x)
can be written as f(x) = [x100..0x200..0x3.....00xn] as all
the product terms from g go to zero.
So, the vector y is of the form f(x) + v′ where v′ =
[v1, 00..0, v2, 00..0, v3, 00....., vn], vi being the bits of the LPN
noise vector v. In other words, y = f(mA) + v′. Hence, by
definition, X , since will return m. Since S succeeds whenever
X succeeds, its probability of success is atleast δ. So, if δ is
non-negligible, the LPN problem can be solved easily.
We can always pick ri satisfying the condition in Step 1 for
any n and n′ ≤ n−1

p . One could initially fix ri = (p− 1); ∀i.
Then

∑
ri = (n′−1)(p−1) = n′p−p−n′+1. Then one can

add the difference (n−p−n′)−(n′p−p−n′+1) = n−n′p−1
(which is always positive) to say, r1, giving us a new set {ri}
satisfying the conditions in Step 1 for any n.

C. NLHB Protocol

Having established the hardness of the UNLD problem,
we now propose the NLHB protocol that is based on this
problem. Figure 2 shows one session of the NLHB protocol.
The protocol is similar to the HB protocol except that the
Prover response is now z1×D = f(sA) + v, v being the
Bernoulli noise-vector with parameter ε. Here, D has to
be large enough (≈1000) and (D,ε,ε′) have to satisfy the
conditions satisfied by the HB protocol parameters (n,ε,ε′)(for
instance, see [10][Figure 2]). For example, D = 1164, ε = .25
and ε′ = .348 is a possible parameter set.

Secret Shared s

Prover Verifier
A←−−−−−−− ChooseA ∈ {0, 1}k×n

z1×D = f(sA) + v
z−−−−−−−→ “Accept” iff

d(z, f(sA)) ≤ ε′D

Fig. 2. Parallelized version of the NLHB protocol

Since f(sA) is some unknown codeword of the random non-
linear code {f(siA)}2ki=1. To find the secret s, the attacker now
has to decode this random non-linear code (from Bernoulli
noise) instead of the linear code with generator matrix A. We
will show in Section IV that none of the existing passive
attacks on HB protocol family work on our protocol and
that, for certain choices of f within this family, the protocol
complexity is very low.

D. Security Proofs For NLHB In Passive Model

The proof of security for NLHB in the passive model
involves reductions to the forging of the protocol in the passive
model from the solving of the UNLD problem. It is detailed
in Theorems 2 and 3. Theorem 2 shows that it is NP-hard to
distinguish between the output of a NLHB protocol oracle
As,ε,f (an oracle gives out the NLHB transcript 〈A, z〉 for
some unknown secret) and an oracle Ukn+D which outputs
a stream of (kn + D) uniformly distributed bits. It does
this by reducing the UNLD problem to this distinguishing
problem. Similarly, Theorem 3 proves the hardness of forging
NLHB protocol by reducing the forging problem from the
problem of distinguishing the above-said oracles. Together,
these Theorems imply the existence of a UNLD solver if
an algorithm capable of forging NLHB in the passive model
exists, which is in contradiction to the hardness of UNLD.
Thus, we prove the security of NLHB by contradiction.

These proofs are mostly based on the proof of security given
for the HB protocol in ([9],[8]), with suitable modifications
and additions to support the function f . So, we simply state
the final result of the proofs below.

Theorem 2: (Distinguishing NLHB oracle from random or-
acle is equivalent to finding the NLHB protocol secret) Sup-
pose there exists a probabilistic polynomial-time algorithm Y
making q queries to the oracle and outputting 0/1, running in
time t, such that 1∣∣Pr [s← {0, 1}k : Y As,ε,f = 1

]
− Pr

[
Y Ukn+D = 1

]∣∣ ≥ δ
Then there exists X making q′ = O(q.δ−2log(k)) queries
running in time t′ = O(t.k.δ−2log(k)) such that

Pr
[
s← {0, 1}k : XAs,ε,f = s

]
≥ δ/4

Theorem 3: (Forging NLHB Prover is equivalent to
distinguishing NLHB Oracle from random oracle) If
AdvNLHB−attackZ (k, ε, u, f) = δ is non-negligible 2 for some
polynomial time adversary Z, then the UNLD problem can be
efficiently solved.

IV. IMPLEMENTATION AND EFFICIENCY

In this section, we use the specific low-cost candidate for
f given in Equation 2 to demonstrate how existing passive
attacks on the HB protocol fail against the NLHB protocol.
Then, we compare the Prover complexity of NLHB and HB
protocols and demonstrate that the NLHB Prover is required
to carry out lesser operations when compared to a HB prover
that achieves the same level of security.

1Y As,ε,f implies Y has oracle access to As,ε,f
2“Adv” is the difference between success probability of Z and an algorithm

giving D random bits as Prover Response

A. Resistance Against Current Passive Attacks

Using the specific f in Equation 2, we will show how
the existing LF2 attack on LPN is ineffective on the NLHB
protocol. Let x = [x1, ..., xn] = sA = [s.a1, ..., s.an], where
[a1, ...,an] are columns of A. Let y = f(x). Then, the passive
adversary to NLHB has access to z = y + v.

As explained in Section II, the LF2 (or BKW) algorithm
works by repeatedly adding the columns of the matrix A and
obtaining the response corresponding to this new matrix by
adding the responses corresponding to the added columns.
We examine the result when the attacker does one column
addition. Let the attacker modify A into A′ = [a1, ...,aj +
ak, ...,an], i.e, he adds the kth column to the jth column.
The corresponding matrix product between s and A′ will be
x = [x1, x2, ..., xj + xk, ..., xn], i.e x is the same as x except
that the jth position value is xj + xk. Let y = f(x). Now
let us compare the relation between the unnoised responses
y and y. As can be seen, the only output bits getting
affected by the change of matrix are the ones with indices
(j − 3), (j − 2), (j − 1), j. We readily see the following
relationships.

yj−3 = xj−3 + xj−2xj−1 + xj−1xj + xjxj−2.

yj−2 = xj−2 + xj−1xj + xjxj+1 + xj+1xj−1.

yj−1 = xj−1 + xjxj+1 + xj+1xj+2 + xj+2xj

yj = xj + xj+1xj+2 + xj+2xj+3 + xj+3xj+1.

yj−3 = xj−3 + xj−2xj−1 + xj−1(xj + xk) + (xj + xk)xj−2.

yj−2 = xj−2 + xj−1(xj + xk) + (xj + xk)xj+1 + xj+1xj−1.

yj−1 = xj−1 + (xj + xk)xj+1 + xj+1xj+2 + xj+2(xj + xk).

yj = xj + xk + xj+1xj+2 + xj+2xj+3 + xj+3xj+1.

Let us denote the errors between these corresponding bits as
Ej−3, Ej−2, Ej−1, Ej . From the above equations, we get

Ej−3 = yj−3 + yj−3 = xj−1xk + xkxj−2,

Ej−2 = xj−1xk + xkxj+1,

Ej−1 = xj+1xk + xkxj+2,

Ej = xk.

Each error term above is an unknown bit to the attacker,
since he does not have access to either a noised or un-noised
version of these terms. So, the attacker has to guess the error
bits Ej−3, Ej−2, Ej−1, Ej that need to be added to the new
response to get the right responses corresponding to the new
matrix. The amount of uncertainty involved in guessing these
bits can be found from the entropy of [Ej−3, Ej−2, Ej−1, Ej].
Since the bits xi are uniformly distributed, it can easily be seen
that this entropy is equal to 2.5 bits. So each time a column is
added, the attacker has to guess 2.5 bits on an average. Since
there are many such additions needed in the LF2 attack, this
attack is not feasible against the NLHB protocol. In Table I,
we give some function choices that maximise this entropy for a
given p. We can see from the table that the entropy increases
with increase in p, meaning that higher values of p would
make LF2 attacks harder. Similar arguments can be given for
the infeasibility of the Imai [3] attack, that also relies heavily
on linearity.

The infeasibility of these passive attacks indicates that the
NLHB protocol can achieve 80-bit security using smaller
keysizes than the HB protocol (which uses 512 bits) and
the general lack of solutions to the problem of decoding the
random non-linear codes implies that it is reasonable to use

keysizes very close to 80 bits with this protocol. However,
keeping in mind, the possibility of new attacks, we suggest
using 128-bit keys as secrets.

B. Comparison of Prover Complexity of NLHB and HB

We calculate the Prover (or Verifier) algorithm’s complexity
in terms of binary (scalar) additions and scalar multiplications.
Further, since the complexity involved in adding noise is the
same in both protocols, we compare the complexity involved
in the calculation of the un-noised responses in the Prover (or
Verifier).

We recall that the HB protocol response for the challenge
matrix Ak×n is given by z = sA + v. The matrix product
sA requires kn scalar multiplications and (k − 1)n (binary)
additions for its calculation. Assuming that ε = .25 and ε′ =
.348, the recommended response length and key-size (for 80-
bit security) for HB are n = 1164 [10] and around k = 512.

In the NLHB protocol, we have a k × (D + p) challenge-
matrix A which we use to find sA. This requires k(D + p)
scalar multiplications and (k − 1)(D + p) additions. If we
assume that we use the function f in (2) (with p = 3),
we require 3D scalar multiplications and 3D additions for
evaluating the function f . So to calculate f(sA), we need
k(D + 3) + 3D multiplications and 3D + (k − 1)(D + 3)
additions. (Since we add a length-D noise vector in NLHB,
D will be 1164 here.)

For the sake of comparing complexities, if we assume
a high-security version of NLHB which uses k = 512,
then we see that NLHB needs a total of 600996 multipli-
cations and 599829 additions, whereas HB protocol requires
595968 multiplications and 594804 additions. This approxi-
mately represents a 0.85% increase in the both the number
of multiplications and additions. However, with k = 128, the
computation of noise-free NLHB response requires 152868
scalar multiplications and 151701 additions, which is far less
than the number of computations needed for a HB protocol
Prover to achieve the same level of security.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proven the hardness of a non-
linear decoding problem that we call the UNLD problem and
proposed the NLHB authentication protocol, which is a variant
of HB. This new protocol has better passive attack security
than the HB protocol and is very light-weight, having very
low Prover complexity. Though we have not discussed active
attacks here, it is straightforward to extend the NLHB protocol,
in the spirit of the HB+ protocol [7], to resist against the active
attacks specified in [7]. However, such an extension, like the
HB+, would be vulnerable to Man-In-The-Middle attacks like
the ones shown on HB+ [4], [12](part of a prevention-based
attack model). It would be interesting to see modifications to
the NLHB protocol that can resist such attacks.

REFERENCES

[1] E.R. Berlekamp, Robert.J.McEliece and Henk.C.A.van Tilborg. On the
Inherent Intractability of Certain Coding Problems. IEEE Transactions
on Information Theory, 1978.

[2] A. Blum, A. Kalai, and H.Wasserman. Noise-tolerant Learning, the Parity
Problem, and the Statistical Query Problem Journal of the ACM 50,4, July
2003, pp. 506-519.

p Function Achieving Maximum entropy for given p Maximum Entropy Achieved for given p
2 yi = xi + xi+1xi+2 2
3 yi = xi + xi+1xi+2 + xi+1xi+3 2.5
4 yi = xi + xi+1xi+4 + xi+2xi+3 3

TABLE I
MAXIMUM ENTROPY ACHIEVED FOR A GIVEN p AND THE FUNCTION ACHIEVING THIS MAXIMUM

k ε ε′ Size of Challenge Matrix Length Of Prover Response Scalar Multiplications Scalar Additions
HB 512 .25 .348 512× 1164 n=1164 595968 594804

NLHB 128 .25 .348 128× 1167 D=1164 152868 151701

TABLE II
PROVER/VERIFIER COMPLEXITIES FOR HB AND NLHB FOR f WITH p = 3, FALSE-REJECT PROBABILITY PFR = 2−40 AND FALSE-ACCEPT

PROBABILITY PFA = 2−80 AND 80-BIT SECURITY.

[3] Josè Carrijo, Rafael Tonicelli, Hideki Imai, Anderson C. A. Nascimento.
A Novel Probabilistic Passive Attack on the Protocols HB and HB+.
Available from http://eprint.iacr.org/2008/231.pdf.

[4] H. Gilbert, M.J.B. Robshaw, and H. Sibert. An Active Attack Against
HB+: A Provably Secure Lightweight Authentication Protocol. IEE
Electronics Letters, vol. 41, number 21, 1169-1170, 2005.

[5] H. Gilbert, M.J.B. Robshaw, and Y. Seurin. Good Variants of HB+ are
Hard to Find. In Proceedings of Financial Crypto 2008.

[6] N. Hopper and M. Blum. A Secure Human-Computer Authentication
Scheme. Technical Report CMU-CS-00-139, Carnegie Mellon University,
2000.

[7] A. Juels and S. Weis. Authenticating Pervasive Devices with Human
Protocols. Adv. in Cryptology - Crypto 2005, LNCS vol. 3621, Springer-
Verlag, pp. 293-308, 2005.

[8] J. Katz and A. Smith. Analysing the HB and HB+ Protocols in the “Large
Error” Case. Available from http://eprint.iacr.org/2006/326.pdf.

[9] J. Katz and J. Shin. Parallel and Concurrent Security of the HB and HB+

Protocols.Advances in Cryptology - Eurocrypt 2006,LNCS, vol. 4004, 73-
87, Springer, 2006.

[10] E. Levieil and P.A. Fouque. An Improved LPN Algorithm. Proceedings
of SCN 2006, LNCS vol. 4116, 348-359, Springer, 2006.

[11] Kishan Chand Gupta and Palash Sarkar. Construction of Perfect Nonlin-
ear and Maximally Nonlinear Multiple-Output Boolean Functions Satisfy-
ing Higher Order Strict Avalanche Criteria. IEEE Trans. On Information
Theory, Vol. 50, No. 11, Nov. 2004.

[12] Khaled Ouafi, Raphael Overbeck, Serge Vaudenay. On the Security of
HB# against a Man-in-the-Middle Attack. Asiacrypt 2008, 108-124.

APPENDIX

Theorem 4 (f is a Balanced Function): If the input to the
function f is uniformly distributed, so is its output.

Proof: We first prove that each bit of the output is
balanced. For this, we consider Pr[yi = 1].

= Pr[xi+g(xi+1, ..., xi+p) = 1]

=
1

2
Pr [g(xi+1, ..., xi+p) = 1 | xi = 0]

+
1

2
Pr [g(xi+1, ..., xi+p) = 0 | xi = 1]

Since the input vector is uniform, the bits of x are indepen-
dent. So, this is equal to

=
1

2
Pr [g(xi+1, ..., xi+p) = 1] +

1

2
Pr [g(xi+1, ..., xi+p) = 0]

=
1

2
(3)

So each bit of the output is balanced. Now, we use this to
prove our theorem. To this end, we first define the following
vectors. Let yi = [yD−i+1, .., yD] be the vector containing the
last i bits of y. So yD = y. Let a = [a1, ..., aD] be an arbitrary
constant D-bit vector. We also define ai = [aD−i+1, .., aD]

similar to yi. Now consider the probability Pr[yi = ai].

Pr[yi = ai] = Pr[xD−i+1 = 0]Pr[yi = ai | xD−i+1 = 0]

+Pr[xD−i+1 = 1]Pr[yi = ai | xD−i+1 = 1]

(4)

Since the input is uniformly distributed, this is equal to

= 1
2
Pr[yi = ai | xD−i+1 = 0] + 1

2
Pr[yi = ai | xD−i+1 = 1]

= 1
2
Pr[g(xD−i+2, ..., xD−i+p+1) = aD−i+1,y

i−1 = ai−1 | xD−i+1 = 0]

+ 1
2
Pr[g(xD−i+2, ..., xD−i+p+1) = aD−i+1 + 1,

yi−1 = ai−1 | xD−i+1 = 1]

We point out that in the vector yi, only the bit yD−i+1 is
dependent on xD−i+1. Since both g(xD−i+2, ..., xD−i+p+1)
and yi−1 are independent of xD−i+1, we can remove the
conditioning from the above equation. So the above expression
becomes,

1

2

(
Pr[g(xD−i+2, ..., xD−i+p+1) = aD−i+1,y

i−1 = ai−1]

+Pr[g(xD−i+2, ..., xD−i+p+1) = aD−i+1 + 1,yi−1 = ai−1])

(5)

Now g(xD−i+2, ..., xD−i+p+1) takes binary values
0 and 1. So, by summing the joint probability of
g(xD−i+2, ..., xD−i+p+1) and yi−1 over these values,
we are effectively finding the marginal probability of yi−1.
So, we have

Pr[yi = ai] =
1

2

(
Pr[yi−1 = ai−1]

)
(6)

Plugging i = D in the above equation, and expanding, we
have

Pr[yD = aD] =
1

2

(
Pr[yD−1 = aD−1]

)
=

1

22

(
Pr[yD−2 = aD−2]

)
...

=
1

2D−1

(
Pr[y1 = a1]

)
=

1

2D−1
(Pr[yD = aD])

=
1

2D
(7)

from Equation 3. Since this proof holds for any ai, the output
of f is uniformly distributed.

