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Abstract—The focus of this paper is two-fold: (a) to develop a
knowledge-based robust syllable segmentation algorithm and (b)
to establish the importance of accurate segmentation in both the
training and testing phases of a speech recognition system.

A robust segmentation algorithm for segmenting the speech
signal into syllables is first developed. This uses a non-statistical
technique that is based on group delay(GD) segmentation and
Vowel Onset point(VOP) detection. The transcription correspond-
ing to the utterance is syllabified using rules. This produces an
annotation for the train data. The annotated train data is then
used to train a syllable-based speech recognition system. The
test signal is also segmented using the proposed algorithm. This
segmentation information is then incorporated into the linguistic
search space to reduce both computational complexity and word
error rate(WER). WER’s of 4.4% and 21.2% are reported on the
TIMIT and NTIMIT databases respectively.

I. INTRODUCTION

Syllables have long been regarded as robust units of speech

perception and recognition[1], [2]. Automatic segmentation

and labeling of speech at the phonetic level is not very accurate

while syllable boundaries are more precise and well defined.

In a speech recognition framework, although the syllable as

a basic acoustic unit suffers from the problem of training

data sparsity, techniques to improve recognizer performance

even with small amount training data with longer duration

units like the syllable exist[3], [4]. Boundary detection and the

use of the same in the recognition framework have proven to

be useful in improving recognition accuracy of phone-based

continuous speech recognition systems[5], [6]. [7] describes

a hybrid ANN/HMM syllable recognizer that tracks vowel

phonemes based on discrete hidden markov models, multilayer

perceptrons, heuristic rules and models segments between con-

secutive vowels. They reported a syllable recognition rate of

75.09% on the TIMIT database. Most of these techniques are

based on the use of segmentation as obtained from statistical

techniques that require significant amounts of train data. On

the other hand, we look to propose a purely knowledge based

technique that does not require any training apriori.

Previously, [8] developed two-level group delay segmen-

tation to segment the speech signal into syllable-like units.

But this technique requires significant tuning for every new

database. In particular, the parameters had to be re-tuned when

the syllable-rate varied significantly. In the first-level, gross

segmentation gave polysyllable boundaries. In the second-

level, polysyllables were re-segmented using a duration con-

straint. But when syllable rates vary significantly, duration

constraints cannot be used effectively.

In this paper, different methods to make segmentation

robust against variations in syllable rate are explored. First,

a syllable rate based parameter lookup is created by mapping

an approximate estimate of syllable rate to the correct res-

olution for segmentation. In another approach, Vowel Onset

Points (VOP)’s detected using [9] are used to (i) determine

the approximate syllable rate, (ii) disambiguate the syllable

boundaries obtained using group delay (GD) segmentation.

Additionally, analysis on incorporating the syllable bound-

aries into the linguistic framework during recognition is re-

ported.

The remainder of the paper is organized as follows. In

Section II, the relationship between group delay segmenta-

tion and syllable rate is studied empirically. In Section III

the proposed algorithms are discussed. Section IV explores

their performance in a segmented syllable based continuous

speech recognizer. Section V reports experimental details and

conclusions are made in Section VI.

II. GROUP DELAY BASED SEGMENTATION OF SPEECH

The baseline group delay based segmentation algorithm

uses a minimum phase signal derived from the short-term

energy(STE) as if it were a magnitude spectrum. The high

energy regions in the STE reflect the syllable nuclei and

the valleys at either ends of the nuclei reflect the syllable

boundaries. The algorithm follows [10].

1) Let x[n] be the samples of a continuous speech utter-

ance.

2) Compute the STE function E[m] using overlapped win-

dows. This can be viewed as the magnitude spectrum

(from 0 to π) of some real-valued signal.

3) Using symmetry, extend the spectrum over the region

(−π, 0), and denote the entire spectrum by Ẽ[k].
4) Compute the IDFT of 1/Ẽ[k] to give ẽi[n]. This signal

is the root cepstrum, the causal portion of which has the

properties of a minimum phase signal.

5) Compute the minimum phase group delay function of

the windowed causal sequence of ẽi[n] and call it as

Ẽgd[k]. The size of the window (i.e., cepstral lifter) is

denoted by Nc.



6) The location of the positive peaks in the minimum phase

group delay function Ẽgd[k] approximately correspond

to syllable boundaries.

The parameter Nc (length of the cepstral lifter) determines

the resolution of the boundaries in the speech signal.

Nc =
Length of the energy function

Window scale factor
(1)

where window scale factor (WSF) is an integer > 1. Note
that Nc is inversely proportional to WSF. If Nc is high, the

resolution will be high and two very closely spaced boundaries

can be resolved. If its too high, a boundary will appear between

CV/CVC at the CV transition. Thus, the choice of WSF and

in turn Nc depends on the syllable rate.

Figure 1 shows the segmentation of 3 different utterances

of the text “She had your dark suit in greasy wash water

all year” at three syllable rates 2.5, 4 and 5.5 syl/sec. WSF

is fixed at 8. Observe that segmentation is correct only for

the 4 syl/sec utterance, while over-segmentation occurs for

2.5 syl/sec utterance and under-segmentation occurs for 5.5
syl/sec utterance.
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Fig. 1. Group delay plots for three utterances of the text “She had your

dark suit in greasy wash water all year”. (a) Utterance at 2.5 syl/sec (b) GD
Plot for above utterance at WSF = 8 (c) Utterance at 4 syl/sec (d) GD Plot
for above utterance at WSF = 8 (e) Utterance at 5.5 syl/sec (f) GD Plot for
above utterance at WSF = 8

III. ROBUST SYLLABLE SEGMENTATION

Although the term ’syllable rate’ applies to an entire speech

utterance, considerable local variation in the utterance rate is

present. Thus, a constant WSF for an entire utterance doesn’t

resolve all the boundaries.

As a first step, we seek to obtain a generalized variation

of WSF with syllable rate. For this, the syllable rates in all

corpora under consideration are first analyzed. The transcrip-

tions available along with the utterances are used to estimate

the syllable-rate. Next, the WSF that best segmented each

utterance across the entire dataset is obtained. Eventually, bins

of a constant WSF for a range of syllable rates is observed.

This results in a syllable rate-WSF lookup table.

We now discuss two methods to estimate a syllable rate that

can be used with the lookup to pick a WSF.

In the first method, the property that the energy is low at

syllable-onset and coda is used to estimate the syllable rate

(see Section III-A1). In the second method, the property that

the syllable nucleus consists of a single vowel is used(see

Section III-A2).

A. Syllable rate estimation

1) Lower Energy Threshold (LET) and Upper Energy

Threshold (UET): Extensive analysis of the training data

revealed that the average STE of speech utterances was corre-

lated to empirically defined lower and upper STE thresholds.

The syllable count is obtained by measuring the number of

times the STE passes from the LET to the UET. Using

STE directly for segmentation suffers as indicated in [11].

It is however sufficient to obtain an approximate estimate

of syllable rate. To obtain the syllable rate, the following

algorithm is employed.

LET and UET were estimated using the original utterance,

the low-pass filtered utterance, the bandpass filtered utterance

and the transcription. The text transcription from the training

data was first syllabified. Using this information, the average

STE and the corresponding LET and UET that estimated the

correct syllable rate were obtained.

For each utterance in the test data,

1) Compute the average STE of the original, low-pass

filtered and bandpass filtered utterance.

2) Use it as an index and obtain LET and UET for each

case.

3) Measure how many times the STE of the test utterance

goes from LET to UET for each case and get syllable

count estimate.

This is divided by the duration to get the syllable rate.

2) VOP detection: A vowel detection process is run on an

entire test utterance and the number of VOP’s in the utterance

gives us an estimate of the syllable count. The details of how

vowels are detected is described in the next section.

B. Proposed Approach: Vowel Onset Point(VOP) detection

In spoken English, over 80% of the syllables are of the

canonical CV, CVC, VC and V forms. The syllable nucleus

is typically a sonorant, usually a vowel sound. Thus, if a

segment represents a unique syllable, it is expected to have

a single instant at which the onset of the vowel takes place.

This quality can prove very useful in refining the segmentation

process. That is, if a waveform is segmented with a much

higher resolution than what is needed in the preliminary step,

local variations that need the highest resolution are resolved

but additional boundaries tend to show up at the CV transition

between CV/CVC. A VOP detection can then be performed on

the segments and those that reveal single VOP’s are correctly

segmented. Those that do not reveal any VOP’s can be merged



with their neighbor, implying that they were the result of a split

through a syllable and merging them with a neighbor results

in a complete syllable.

Vowels associate with distinct vocal tract shapes that man-

ifest in the spectrum of the speech signal as peaks. Thus,

by picking some of the largest peaks in the spectrum, the

amplitudes of the formants may be estimated. The VOP’s are

obtained as follows [9]. The sum of ten largest peaks in the

first half of a 256-point DFT of a speech utterance is plotted

as a function of time. This is used as a representation of

energy of spectral peaks. This is then enhanced and the VOP’s

are detected as peaks in the VOP Evidence Plot. Figure 2

demonstrates an example.

First, a value of WSF that gives high resolution is picked

and segmentation is performed. This will result in spurious

boundaries in addition to the correct boundaries 1 (See Fig

2 (a)). Next we detect the VOPs for the segments obtained

using group delay segmentation (See Fig 2 (c)). Segments

corresponding to a unique VOP are treated as a single syllable

segment while segments with no VOP’s are merged with their

neighbor. Some segments showing excess of one VOP are re-

segmented (see Fig 2(e)).
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Fig. 2. segmentation using VOP detection (a) Segmentation with high
resolution (b) Group delay function for above segmentation (c) VOP Evidence
Plot (d) Group delay function after grouping (e) Final set of segments

IV. SEGMENTED SYLLABLE BASED SPEECH RECOGNIZER

A. Training

Speech is segmented into syllable like units using the algo-

rithm described above. The corresponding text is segmented

using rules. By mapping the segmented speech and text,

syllable level annotations are obtained for the training data.

Different examples of each syllable are used to build isolated-

style syllable-HMMs. The block diagram for the training

procedure is shown in Figure 3.

1It was observed in [11] that group delay based segmentation algorithm
does not misplace boundaries

Fig. 3. Block diagram of training procedure

B. Testing

During testing, the utterances are segmented using the modi-

fied algorithm. The important difference between conventional

recognizer and the proposed system is the use of segmentation

in the linguistic framework. Conventional recognizers use the

language information to derive the word output from the

recognizer. The language models are specified as grammar or

N -gram language models. Here too, language models are used

in a syllable-recognition framework albeit with a difference.

Fig. 4. A sample utterance

Consider the test utterance shown in Figure 4 with marked

syllable boundaries. Figure 5 explains the search in the context

of a conventional system versus that in the proposed system.

t1 t2 t2 t3 t3 t4 tn−1 tn

t1 t2’ t2’ t3’ t3’ t4’ tn−1’ tn

Conventional System
P(A S1) P(S1 S1)

P(S2 S1) P(S2 S1)

P(S2 S2)

Hmm S1 Hmm S1 Hmm S1 Hmm S1

Hmm S2 Hmm S2 Hmm S2 Hmm S2

Hmm Sn Hmm Sn Hmm Sn Hmm Sn

Proposed System
t1 t2 t2 t3 t3 t4 tn−1 tn

t1 t2 t2 t3 t3 t4 tn−1 tn

Fig. 5. Viterbi decoding in a conventional system vs. Viterbi decoding of
the proposed system

Let Hyp I and Hyp II be two hypotheses that are generated



by the language model. Let the paths colored in red and green

represent the paths taken by the Viterbi decoder for each of

the hypotheses, respectively. The waveforms on the top and

bottom show the segmentation of the waveform that may result

during the decoding process. The segment boundaries obtained

can be different (in the figure, this is exaggerated only to

make a point). This is because different HMMs are active

at the same time for the two different hypotheses. Language

models are accessed whenever an HMM reaches the final state.

This is required to prune the Viterbi Beam search. Clearly in

this example, the language models are accessed at time t2,
t3, t4, tn−1 for Hyp I and at times t

′

2
, t

′

3
, t

′

4
, t

′

n−1
for Hyp

II. In principle, in Traditional Language Modeling(TLM), the

language model can be accessed at the rate at which features

are generated. The proposed approach is again illustrated in

the same example. Figure 5 shows the incorporation of the

acoustic information into the language modeling framework.

Viterbi decoding is again employed here. The difference is

that because the segmentation is supplied to the recognizer, it

needs to access the language model for Viterbi decoding only

at segment boundaries.

To understand its effect on complexity, we discuss a sample

utterance “Salvation reconsidered”. Figure 6 reveals the num-

ber of active HMM states corresponding to each frame with

and without using boundary information. In this example, the

average number of active states corresponding to a conven-

tional system is ≈ 15000 states/frame. The average number

of active HMM states corresponding to the proposed system

is a mere ≈ 6000 states/frame. The basic difference in the

proposed approach is that the LM model is accessed at fixed

time instants across all hypotheses.
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Fig. 6. Number of active HMM states per frame of proposed system vs.
conventional system

V. EXPERIMENTS

A. Conditions

For our experiments we chose the TIMIT[12] and

NTIMIT[13] databases. They consist of phoneme level tran-

scriptions. The dictionary is first syllabified using NIST syllab-

ification software[14] available from NIST. The NIST syllab-

ification software [14], is based on rules that define possible

syllable-initial and syllable-final consonant clusters, as well

as prohibited syllable-initial consonant clusters. The database

contains 2 SA sentences per speaker which are same across

all the 630 speakers. SA sentences are removed from both

train and test databases as they introduce unfair bias. A total

of 3570 unique syllables are present in the training data and

986 unique syllables in the core test set. Test syllables which

are not in the training data are replaced with corresponding

phonemes. Isolated style, continuous, left-to-right, 5 state, 3

mixture HMM’s are built for each syllable.

B. Results

The syllable rates observed across the TIMIT and NTIMIT

databases is as shown in the histogram in Figure 7. They

vary from 1.5 syl/sec to 7.5 syl/sec and average at around 4.5

syl/sec. The correspondence between syllable rate and WSF

obtained empirically is displayed in Table I.
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Fig. 7. Histogram of syllable rates observed across the TIMIT and NTIMIT
databases

TABLE I
TABLE LOOKUP FOR SYLLABLE RATE-WSF CORRESPONDENCE

Rate(syl/s)
from - 1.30 2.00 2.70
to 1.30 2.00 2.70 3.30

WSF 13 12 11 10

Rate(syl/s)
from 3.30 3.93 4.50 4.85
to 3.93 4.50 4.85 5.95

WSF 9 8 7 6

Rate(syl/s)
from 5.95 6.08 6.80 7.50
to 6.08 6.80 7.50 -

WSF 5 4 3 2

Figure 8 shows the scatter plots for the estimated syllable

rate versus the transcribed syllable rate for the two methods

discussed on the TIMIT and NTIMIT corpora. Observe the

linear relationship on the scatter plots. The blue boxes repre-

sent the WSF bins and all points that fall within the boxes

are segmented with the correct WSF. The performance of



segmentation using the fixed WSF method, the lookup based

method and the VOP detection based method (Section III-B)

is as shown in Table II.
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Fig. 8. Scatter plots of estimated syllable rate versus transcribed syllable rate
for entire test set in (a) TIMIT using LET-UET thresholds (b) NTIMIT using
LET-UET thresholds (c) TIMIT using VOP detection (d) NTIMIT using VOP
detection. The blue boxes represent the WSF bins. Points falling within the
bins are segmented with the correct WSF.

TABLE II
SYLLABLE SEGMENTATION ACCURACY USING VARIOUS METHODS

Corpora % FR % FA

w/o syllable-rate info TIMIT 21.37% 16.95%

with syllable-rate info TIMIT 8.68% 4.74%

with VOP detection TIMIT 6.91% 3.12%

w/o syllable-rate info NTIMIT 33.12% 37.76%

with syllable-rate info NTIMIT 12.57% 14.21%

with VOP detection NTIMIT 10.46% 9.65%

The WER’s obtained for the TIMIT and NTIMIT corpora

are shown in Table III. . 2-level GD refers to the method

discussed in [8]. Lookup Based GD refers to our first method

where the approximate syllable-rate is estimated and the WSF

value is looked up. VOP detection + GD corresponds to

the system discussed in Section III-B, where the syllable

boundaries are verified using VOP detection. The performance

of the 2-level GD based system is poor as the WSF value

is fixed for the entire data. Using a lookup table performs

fairly well but requires that syllable-rate of the utterance be

estimated first. This is prone to errors with a basic syllable es-

timation method. The VOP+GD based segmentation approach

gives significantly better results and doesn’t require any such

estimation. The flat-start recognizer does not use boundary

information and significant difference in WER is observed

between both systems.

VI. SUMMARY

In this paper, we have proposed a robust syllable seg-

mentation technique that uses VOP detection in tandem with

TABLE III
WER’S ON THE TIMIT AND NTIMIT CORPORA FOR EACH TYPE OF

SYSTEM

System TIMIT %WER NTIMIT %WER

2-level GD 42.3% 59.7%

Lookup based GD 5.2% 24.3%

VOP detection + GD 4.4% 21.2%

flat-start recognizer 13% 36%

group delay segmentation. The modified algorithm is used

in a syllable-centric continuous speech recognizer based on

the TIMIT and NTIMIT corpora and significant improvement

in WER’s are observed. Additionally, using the segmentation

information in the linguistic framework improved the perfor-

mance of the recognizer.
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