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Abstract—Multiple antenna wireless technology has the poten-
tial to enable high data rate wireless applications. To realize
the spatial diversity offered by a MIMO system, either the
receiver has to perform complex signal processing (such as ML
decoding) or the transmitter has to preprocess the signals which
requires channel knowledge at the transmitter, often through
a feedback link. In this paper, we propose a new space-time
signaling scheme for an Nr × Nt MIMO system that improves
the diversity gain of the weak layers by encoding information
along multiple dimensions and interleaving the co-ordinates of
the symbols over all the layers. We prove analytically that the
proposed scheme achieves full spatial diversity of NtNr . We also
present simulation results that confirm our analytical results and
show the superior performance of our method in comparison with
existing methods. When compared with other diagonally layered
schemes, the proposed scheme requires a very low feedback of
log2Nt! bits and attains full diversity at the cost of a slight
increase in coding and decoding complexity.

Notations. Vectors are denoted by lowercase letters in
boldface and matrices by capital letters in boldface.(·)T and
(·)H denote transpose and conjugate transpose, respectively.
E is the expectation operator and ‖ · ‖ stands for Euclidean
norm. tr(.) denotes trace of a matrix.

I. INTRODUCTION

Multiple-input multiple-output (MIMO) wireless systems,
employing multiple transmit and receive antennas, promise
significant improvement in the capacity compared to con-
ventional single-input single-output (SISO) systems. It was
shown that the capacity of MIMO wireless systems increases
linearly with the minimum of the number of antennas at
the transmitter and receiver in rich scattering environments
[1], [2]. The increase in data rate can be achieved through
spatial multiplexing (SM) as shown by Bell labs layered
space time (BLAST) scheme [3]. Initially, MIMO systems
were developed assuming channel state information (CSI) only
at the receiver. When perfect CSI is available also at the
transmitter, channel-dependent preprocessing or precoding the
data streams can further improve performance by adapting the
transmitted signal to the instantaneous channel realization.

II. SYSTEM MODEL

The discrete-time input-output relation of a MIMO system
with Nt transmit antennas and Nr receive antennas is given
by

y(k) = Hx(k) + n(k) (1)

where, x(k) = [x1x2 . . . xNt
]T ∈ CNt×1 is the transmit

signal vector at time instant k and trE[x(k)x(k)H ] = 1. The

received signal vector at time instant k is given by y(k) =
[y1y2 . . . yNr

]T ∈ CNr×1. n(k) denotes the channel noise with
i.i.d entries distributed according to CN (0, σ2

n).
H ∈ CN (Nr, Nt) is the channel matrix with entries hij

denoting the channel gain from the jth transmit antenna to
the ith receive antenna. hij are assumed to be i.i.d. complex
Gaussian random variables with zero mean and unit variance,
i.e. hij ∈ CN (0, 1).

Also, perfect channel knowledge is assumed at the receiver.

III. ACHIEVING THE AVAILABLE SPATIAL DIVERSITY IN
MIMO SYSTEMS

An Nr×Nt MIMO channel provides a maximum diversity
gain of NtNr.

In a frequency flat narrow band MIMO system, when there
is channel knowledge only at the receiver, the optimal receiver
performs ML decoding achieving N th

r order diversity. But the
complexity scales as mNt , where m denotes the cardinality of
the complex signal set A. With increase in Nt and/or m, the
complexity of ML receiver becomes prohibitive.

Successive interference cancelation (SIC) receiver [4] is
a sub-optimal low complexity approach that performs better
than other low-complexity receivers. It decodes the symbols
sequentially by using successive nulling and cancellation
technique1. H is decomposed as H = QR using standard QR
decomposition, where Q ∈ CNr×Nr is unitary matrix and R ∈
CNr×Nt is upper triangular matrix with diagonal elements
rkk ∈ R. Left-multiplying y with QH yields, z = Rx + w
where, z = QHy and w = QHn. The estimates x̂Nt

, . . . , x̂1

are obtained by (successive) back-substitution. Ignoring error
propagation, we see that the SIC receiver decomposes the
MIMO channel into Nt parallel SISO channels

zk = rkkxk + wk, k = 1, 2, . . . , Nt (2)

The symbol error probability of the kth layer or kth sub-stream
depends on rkk and it can be shown that it has a diversity gain
of Nr − k+ 1 [5]. The overall diversity gain is limited by the
last layer having a diversity gain of Nr−Nt+1. For example,
when Nr = Nt, the system diversity gain gets reduced to unity.

If channel knowledge is available also at the transmitter,
channel-dependent precoding of data streams can improve
the performance of the MIMO system. Next, we discuss one
such precoding scheme with partial CSI that improves the
performance of the SIC receiver.

1Note that SIC requires Nr ≥ Nt



A. SIC Receiver based on Greedy QR Decomposition (GQR-
SIC)

To improve the diversity performance of SIC receiver, [9]
has proposed a diversity optimal SIC receiver , based on
greedy QR decomposition of H. In greedy QR decomposition,
a permutation matrix Π is found such that the QR decompo-
sition of HΠ yields an R matrix with the following property:
rkk, the kth diagonal element of R satisfies

lim
ε→0+

log Pr(r2kk < ε)
log ε

= (Nt − k + 1)(Nr − k + 1)

As shown in [9], it implies that the kth layer of GQR-SIC
receiver has a diversity gain of (Nt − k + 1)(Nr − k + 1).

To implement GQR-SIC, the receiver has to find the permu-
tation matrix Π from its knowledge of H and has to feed it
back to the transmitter. This results in a feedback of log2(Nt!)
bits. At the transmitter, the symbol vector x is pre-multiplied
by Π. GQR-SIC does not impose the restriction that Nr ≥ Nt
as the permutation matrix selects only Nr transmit antennas
out of Nt. It was proved in [9] that GQR-SIC is diversity gain
optimal among all ordered SIC receivers.

The overall diversity gain of the GQR-SIC receiver is
gGQR
d = |Nr −Nt| + 1. In square MIMO systems, i.e., when
Nt = Nr, g

GQR
d gets reduced to unity.

We now propose a new diagonally layered spatial multi-
plexing scheme that employs co-ordinate interleaving over a
multidimensional QAM constellation to improve the overall
diversity gain. The constellation used while transmitting the
symbols would still be over two dimensions. We refer to the
proposed scheme as multi-dimensional co-ordinate interleaved
spatial multiplexing (MD CISM).

IV. MULTI-DIMENSIONAL CO-ORDINATE INTERLEAVED
SPATIAL MULTIPLEXING (MD CISM)

Co-ordinate interleaving with input symbols from rotated
multi-dimensional QAM constellations has been first pro-
posed in [7] for improving diversity gains over single-antenna
Rayleigh fading channels. This technique exploits the co-
ordinate (or component) level diversity by transmitting dif-
ferent co-ordinates of the input symbols over independently
fading channels. This is also known as signal space diversity.
In [8],based on co-ordinate interleaving, a dialogonally layered
CISM scheme has been introduced for a 2× 2 MIMO-OFDM
system, which achieves full diversity with a feedback of 1
bit per tone. When this scheme is extended for a MIMO-
OFDM system with higher number of transmit and receive
antennas, the diversity gain of the overall system is limited by
the diversity gain of the floor(Nt/2) + 1 layer.

We now present a novel spatial multiplexing scheme that
uses co-ordinate interleaving over multi-dimensional QAM
constellation to achieve full diversity. The constellation used
while transmitting the symbols would still be over two dimen-
sions. We specifically take the case of a 4× 4 MIMO system
to explain the transceiver structure. The proposed scheme can
be easily extended for any number of transmit and receive
antennas, provided Nr ≥ Nt.

 

Fig. 1. Transmitter scheme for MD CISM

In the proposed scheme, we precode (or pre-multiply) the
transmitted symbol vector with the permutation matrix Π fed
back to the transmitter. As the precoding can be absorbed
into H to get a new effective channel HΠ, in the following
discussion of MD CISM, we do not explicitly show pre-
multiplying the symbol vector with Π for simplifying the
presentation.

A. MD CISM Transmission

Figure 1 shows the transmitter schematically.
The input bit stream is passed through a 1/8 serial-to-

parallel converter after mapping 0 to 1 and 1 is mapped to
-1. 4 consecutive bits from the output of the serial to parallel
converter are grouped to form a 4-dimensional QAM symbol.
It is then rotated using a rotation matrix Γ obtained from [7].
Hence the resulting symbols are from a constellation eθA,
where A is a standard (un-rotated) 4-dimensional QAM signal
set and θ is the angle of rotation. Let us denote the two
symbols thus obtained as [x1, x2, x3, x4] and [x5, x6, x7, x8].
Co-ordinates of two consecutive symbols are then paired up
as shown in Figure 1 to form symbols over 2 dimensions. The
resultant output is then arranged in a space-time grid as shown
in Figure 2. We denote the resultant symbol vector at time t
as x̄(t) = [x̄1(t), x̄2(t), x̄3(t), x̄4(t)]T , each co-ordinate of
x̄(t) corresponding to each antenna. Before transmission, the
symbols are permuted along space using a permutation matrix
Π obtained using greedy QR decomposition.

The symbols are thus, co-ordinate interleaved along each
diagonal. As in a D-BLAST system, initially zeroes are filled
till the first diagonal.

While terminating the transmission, there is no need to
transmit zeroes for the strongest, i.e. the first layer. Hence,
a total of 3 zeros are transmitted, 1 zero corresponding to the
third layer for the last time instant and 2 zeroes, corresponding
to the second layer for the last and last but one time instants.

As we know, V-BLAST for a 4×4 MIMO system transmits
4tf symbols in tf symbol durations resulting in a spectral
efficiency of 4 symbols per channel use while MD CISM



Fig. 2. Space-time grid for MD CISM

transmits (4tf − 3− 6)/tf symbols per channel use. The loss
in spectral efficiency becomes negligible as tf increases.

B. MD CISM Receiver

We decode the transmitted symbols through GQR-SIC re-
ceiver. At the first time instant, i.e., at t = 1, we receive
y(1) = HΠx̄(1) + n(1). We decompose HΠ as HΠ =
QR, and left-multiply y with QH . With a slight abuse of
notataion, we express the resulting input-output relation as
y(1) = Rx̄(1) + w(1).This equation can be broken down
as,

y1(1) = r11x̄1(1) + w1(1) (3)

From the received symbol vector at time t = 2, y(2) =
[y1(2), y2(2), y3(2), y4(2)], we obtain,

y1(2) = r11x̄1(2) + r12x̃2(2) + w1(2) (4)
y2(2) = r22x̄2(2) + w2(2) (5)

Similarly, when t = 3,

y1(3) = r11x̄1(3) + r12x̄2(3) + r13x̄3(3) + w1(3) (6)
y2(3) = r22x̄2(3) + r23x̄3(3) + w2(3) (7)
y2(3) = r33x̄3(3) + w2(3) (8)

A similar expression can be obtained for the case when
t = 4.
y1(1), y2(2), y3(3) and y4(4) are free of inter antenna in-

terference. From the real and imaginary part of these received
symbols, we obtain z1 and z2, given by

z1 = <[y1(1), y2(2), y3(3), y4(4)] (9)
z2 = =[y1(1), y2(2), y3(3), y4(4)] (10)

This can be re-written as

z1 = [r11x1, r22x2, r33x3, r44x4]+ (11)
<[w1(1), w2(2), w3(3), w4(4)] (12)

z2 = [r11x5, r22x6, r33x7, r44x8]+ (13)
=[w1(1), w2(2), w3(3), w4(4)] (14)

(15)

Now, x̂1 = [x̂1, x̂2, x̂3, x̂4] can be obtained from z1 through
single-symbol ML decoding:

x̂1 = arg min
x1∈A

‖z1 − [r11x1, r22x2, r33x3, r44x4]‖2 (16)

Similarly, x̂2 = [x̂5, x̂6, x̂7, x̂8] can be obtained from z2.
Next, we interleave the co-ordinates of x̂1 and x̂2 to cancel out
the interference caused by these symbols in y1(2), y2(3) and
y3(4) using (4), (7). Again, single- symbol ML decoding is
performed and successive interference cancelation done. Note
that because of the way decoding is done, the symbols going
through the weak layers enjoy the diversity benefit of the
stronger layers.

V. DIVERSITY ANALYSIS OF THE PROPOSED SCHEME

In the following, we compute the diversity gain of all the
data streams transmitted in MD CISM. To be precise, we
obtain the SNR exponent of Ps,k, SEP of kth data stream (i.e.,
kth layer), k = 1, 2, . . . , Nt. We assume that the same signal
set eθA, where A is a standard (un-rotated) M -dimensional
QAM signal set and θ is the angle of rotation, is employed
for all the data streams. The rotation angle θ is chosen such
that no two signal points in the rotated constellation have the
same ordinate [6]. With slight abuse of notation, we denote
eθA by A.

We assume uniform power allocation to all the data streams,
i.e., p1 = p2 = . . . = pNt

= P/Nt. Assume that an arbitrary
symbol xl in the constellation is transmitted. Let Pr

{
xl → xi

}
be the pairwise error probability (PEP), i.e. the probability that
the received symbol is closer to xi than xl. At high SNRs, we
can write

Pr
{
xl → xη(l)

}
≤ Pr{error|xl transmitted} ≤

∑
xi∈A(l)

Pr
{
xl → xi

}
(17)

where xη(l) denotes the nearest neighbor to symbol xl and
A(l) ⊂ A is the set of nearest neighbors of xl.

Pr{xl → xi|r11, r22, . . . , rNtNt
} = Q

(
|ul − ui|

2

)
(18)

where Q(·) is the Gaussian Q-function and,

ul =
√
P/Nt[r11xl1 r22x

l
2 . . . rNtNtx

l
Nt

]
ui =

√
P/Nt[r11xi1 r22x

i
2 r33x

i
3 . . . rNtNt

xiNt
]

xlk and xik denote the kth ordinate of the symbols xl and xi

respectively.

|ul − ui| = (19)√
P/Nt(r211(xl1 − xi1)2 + r222(xl2 − xi2)2 + . . . r2NtNt

(xlNt
− xiNt

)2)
(20)

As the constellation is rotated such that no two symbols lie on
the same co-ordinates along any dimension, xlk−xik 6= 0, k =
1, 2, . . . , Nt for any xl, xi ∈ A.

⇒ |ul − ui| =
√

(P (r211c1 + r222c2 + . . .+ r2NtNt
cNt)) (21)



where, c1, c2, . . . , cNt
are constants that wont affect the di-

versity gain. As P is the average SNR at each of the receive
antenna,

|ul − ui| =
√

SNR(r211c1 + r222c2 + . . .+ r2NtNt
cNt

) (22)

To evaluate (18), we need f(r11, r22, . . . , rNtNt), the joint pdf
of r11, r22, . . . , rNtNt . With greedy QR decomposition, since
it is difficult of obtain the pdfs f(rii) and joint pdfs involving
rii,we use the bounds derived in [9].

∑Nt

j=1 λ
2
j

Nt − j + 1
≤ r211 ≤ λ2

1

i−1∏
j=1

Nt − j + 1, i = 1, 2, . . . , Nt

(23)
Here, λ1 ≥ λ2 . . . λNt

> 0 are the non-zero singular values
of the channel matrix H. By substituting the upper bounds on
rii into (21),

|ul − ui| ≤ (24)√
SNR(λ2

1c1 + λ2
2Ntc2 + . . .+ λ2

2(Nt)(Nt − 1) . . . (2)(1)cNt
)

(25)

As λ2
1 ≥ λ2

2 ≥ . . . ≥ λ2
N > 0, we have the following upper

bound on |ul − ui|

|ul − ui| ≤ (26)√
SNRλ2

1(c1 +Ntc2 + . . .+Nt(Nt − 1) . . . (2)(1)cNt
)

(27)

Similarly, we can obtain a lower bound on |ul − ui| as

|ul − ui| >

√
SNRλ2

1

(
c1
Nt

+
c2

Nt − 1
+ . . .+

cNt

1

)
(28)

Now, by substituting these bounds on |ul − ui| into (18),

Eλ2
1

[
Q

(√
SNRλ2

1c
′
1

)]
≤ Pr

{
xl → xi

}
< Eλ2

1

[
Q

(√
SNRλ2

1c
′
2

)]
(29)

where c′1 and c′2 are appropriately defined constants. The near
zero behavior of f(λ2

k), marginal pdf of kth largest eigen value
of Wishart matrix W has been characterized in [10] and was
shown that, as λ2

k → 0+,

f(λk) = ak(λ2
k)dk + o

(
λ2dk

k

)
k = 1, . . . , n (30)

where dk = (m− k+ 1)(n− k+ 1)− 1, m = max{Nt, Nr}
and n = min{Nt, Nr}. Wang et. al. [11] has shown that
the diversity gain depends on depends on the behavior of the
distribution of channel gain near zero and using proposition 1
from [11], along with (30), it can be shown that

Pr
{
xl → xi

}
= CliSNR−(d1+1) (31)

where Cli is the coding gain. Observe that the SNR exponent
of the PEP do not depend on the particular pair of symbols
being considered. It implies that,

Pr{error|xl transmitted} = CSNR−(d1+1) (32)

and results in,

Ps,1 =
∑
xl∈A

Pr{error|xl transmitted}Pr{xl transmitted}

= K1SNR−(d1+1) (33)

where K1 is a constant that determines the coding gain (or,
equivalently, the array gain) of the SEP. SEP of the kth data
stream can be calculated in a similar way to show that Ps,k =
KkSNR−(d1+1). As d1 + 1 = Nr × Nt, the average SEP of
MD CISM is then given by

Ps = KSNR−NtNr (34)

where K is represents the coding gain. Thus we obtain the
following result:

All the data streams in MD CISM achieve maximum diver-
sity gain of NtNr in a Nr ×Nt MIMO channel.

VI. SIMULATION RESULTS

In this section, we evaluate the BER performance of the
proposed scheme for a 4 × 4 MIMO system through simula-
tions and compare it with that of ML detection and ordered
MMSE-VBLAST which require no feedback, UCD and GMD
with full feedback .

Rotated 4-dimensional QAM symbols are generated as
explained but grouped together eventually encoding it over
two dimensions. H is assumed to be constant over a block
length of T symbols and varying independently from block to
block. The real and imaginary parts of the channel coefficients
are i.i.d Gaussian random variables with zero mean and unit
variance. SNR is defined as E(xHx)/σ2

n, where σ2
n is the

variance of the noise and x is the transmitted symbol vector.
The simulation is performed by averaging over many different
channel and noise realizations.

Figure 2 shows that the slope of the BER curve of MMSE
receiver corresponds to first order diversity. ML and GMD
achieve a diversity order of 4. UCD, with full CSIT, has the
best performance among all the schemes but it requires full
feedback of 16 complex numbers. MD CISM has the same
diversity order of 16 as UCD but the feedback required is
only 5 bits as compared to 16 ∗ 2 ∗N bits required by UCD,
where 2 ∗ N is the number of bits used to represent the real
and imaginary parts of one channel coefficient. The curve
generated in Figure 2 is generated by using N = 8, i.e. a
feedback of 256 bits.

VII. CONCLUSIONS

In this paper, we have proposed a novel spatial multiplexing
scheme for a flat fading MIMO system by encoding informa-
tion over Nt dimensions, interleaving their co-ordinates over
all the layers and transmitting them diagonally along the space-
time grid. Further, the channel is decomposed using greedy



 

Fig. 3. Comparison of BER vs SNR performance of various transceiver
schemes for a 4× 4 MIMO system

QR decomposition, hence, only the permutation matrix needs
to be fed back to the transmitter which amounts to a feedback
of log2Nt! bits. We have proved analytically that the proposed
scheme achieves full diversity of NtNr and supported it by
Monte Carlo simulations. When compared to other closed loop
diversity schemes like GMD and UCD, the proposed scheme
achieves superior performance with very less feedback.

This scheme can be easily extended to a frequency selective
MIMO channel by using it in combination with OFDM.
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