
VHDL Implementation of Two-State Multiple

Turbo Codes

Vikas Bhatia

Defense Electronics Applications Laboratory,

Dehradun-248001, India

Email: vikas.bhatia@deal.drdo.in

Adrish Banerjee

Department of Electrical Engineering,

Indian Institute of Technology Kanpur,

Kanpur-208016, India

Email: adrish@iitk.ac.in

Abstract—With increasing demand for different data rates
and services for communication systems, reconfigurability is of
utmost importance. Field Programmable Gate Arrays (FPGAs)
provide the flexibility in operation and function by a simple
change in the configuration bit stream. Low complexity turbo-like
codes based on simple two-state trellis or simple graph structure
results in decoder with low complexity. Two-state multiple turbo
code is one such example. In this paper, we present the VHDL
implementation of a 2-state multiple turbo code architecture
targeted towards the Xilinx Vertex-5 FPGAs and compared
its implementation with 8-state 3GPP turbo code in terms of
hardware complexity and speed.

I. INTRODUCTION

Turbo codes [1] are a class of capacity approaching parallel

concatenated codes that have found applications in many com-

munication standards . Several implementations for standard

8-state 3GPP turbo codes [2] have come up with different

strategies covering issues related to decoding algorithm [3],

[4], fixed point arithmetic [5], [6], low power techniques,

memory management, hardware architectures, and different

hardware platforms [7].

In literature [8]–[14] most of the implementations use the

MAP algorithm [15] in logarithmic domain or some variant

of log-MAP algorithm. These simpler variants are the MAX-

Log-MAP, Constant-Log-MAP, Linear-Log-MAP and Scaled-

Log-MAP algorithms. The designs support the fixed point

arithmetic. With upto two fractional bit representations it has

also been shown that the optimized quantization levels are

5-bits for LLR systematic data, 7-bits for LLR estimate and

9-bits for internal metrics to achieve optimum performance

[6]. Metric normalization is generally done by subtracting

the maximum or minimum value at each stage from all the

values. The decoder stopping criteria is either fixed number of

iterations or dynamic depending upon conditions which also

leads to low power consumption. The interleaver/deinterleaver

implementations are kept simpler using Look-Up Table (LUT)

based approach to store the permuted addresses. The decoding

structure is generally serial concatenation of component SISO

decoders. However, higher throughputs can be achieved by

performing decoding in parallel fashion. Throughput improve-

ments can also be achieved by designing internal pipelined

parallel computing structures and improved contention free

memory access.

The paper is organized as follows. In section II, we describe

low complexity multiple turbo codes. In section III, we give

the VHDL implementation details of 2-state multiple turbo

codes. Finally in section IV, we present post synthesis results,

and conclude the paper.

II. MULTIPLE TURBO CODES

Multiple turbo codes (MTC) are a class of parallel concate-

nated codes with three or more constituent encoders separated

by multiple interleavers [16]. Multiple turbo codes provide

us with more parameters to design an efficient error control

coding scheme. Several approaches to low complexity turbo-

like code designs based on very simple graph structures or

2-state trellises have been designed that results in low decoder

complexity. It has been shown that 2-state multiple turbo codes

outperform 8-state 3GPP turbo codes both in the waterfall and

errorfloor regions [17], [18]. For multiple turbo codes using

2-state constituent encoders, there are only two possibilities,

namely, an accumulator (ACC)
[

1 1

1+D

]

encoder and a feed-

forward (FF) [1 1 + D] encoder. Figure 1 shows the encoder

structure of a nonsystematic multiple turbo code that uses an

asymmetric combination of four 2-state constituent encoders

with three interleavers [18]. It employs a parallel concatenation

of three ACC encoders and a FF encoder. The overall rate

of this 4-parallel un-punctured nonsystematic code is R=

1/4. The resulting code is then punctured to rate 1/2. The

puncturing pattern is shown in Figure 1. Using an EXIT chart

analysis [19], [20], the authors in [21] have shown that the

ACC encoder helps to achieve good initial extrinsic estimates,

while the FF encoder aids in faster convergence. Constituent

decoders for multiple turbo codes can operate in parallel at

any given time. It was shown in [22] that parallel decoding will

result in fastest convergence and one of the best performance

among different decoding configurations.

Simulations studies conducted in [18] showed that the Bit

Error Rate (BER) performance of the two-state codes is about

0.05-0.1 dB better than the 8-state 3GPP code in the waterfall

region. The Frame Error Rate (FER) of the two-state 4-parallel

multiple turbo code is one order of magnitude better than

the 3GPP code. However, the 2-state multiple turbo codes

typically require 4-6 more iterations to converge compare to

the 8-state 3GPP standard at low SNRs.

Fig. 1. R=1/2, 2-State 4-Parallel MTC Encoder

III. IMPLEMENTATION

The encoder and decoder are designed completely using

synthesizable VHDL following structural hierarchy . The

design to a large extent is parameterized with definitions

in a separate VHDL design package. Moreover, the VHDL

constructs do not use any macros that are device specific

(Xilinx or Altera or any other vendor) and hence can be ported

to any FPGA device.

The decoder design has the following features:

1) 5-bit soft representation for input log likelihood ratio

(LLR) parity data, 6-bit for internal metrics and 6-bit

for extrinsic information. No significant improvement in

the performance was observed for further increase in

number of bits used for representation. These numbers

are less than what was suggested in [23] for turbo codes.

2) Scaled MAX-Log-MAP algorithm with scaling factor

= 0.75. Since MAX-Log-MAP algorithm has simpler

implementation, it was chosen for implementation. The

performance was evaluated for different scaling factors

for MAX-Log-MAP algorithm. The best performance

was observed for scaling factor of 0.7. Since, scaling

factor of 0.75 has simple implementation, it was chosen

for implementation.

3) Fixed point arithmetic with 2 LSB representing frac-

tional values.

4) Symmetric structure of trellis utilized for gamma (path

metrics) computation reduces memory requirements to

half.

5) In-built RAM storage for gamma and alpha (forward

recursion) metrics and LLR estimates .

6) In-built LUT (look up table) based interleaving and de-

interleaving operations

7) Dynamic normalization of alpha and beta (backward re-

cursion) metrics reduces arithmetic complexity, storage

requirements and power consumption.

8) Punctured systematic bits for rate 1/2 implementation

reduce the arithmetic complexity significantly.

9) Latency (clock cycles) = 2× FrameLength + 5

The encoder block interface in Figure 2 shows the input and

output ports of the block and their descriptions.

Fig. 2. Encoder Block Interface

The detailed schematic diagram of the encoder is shown

in Figure 3. The encoder structure comprises of four parallel

Fig. 3. Encoder Schematic

concatenated two-state accumulator (ACC) and the feedfor-

ward (FF) encoders in the ACC-ACC-FF-ACC configuration.

The main sub-blocks of the encoder are ACC, FF, Interleaver

and Delay. The delay block is basically used to delay the data

by frame-length so that all four encoded streams are output in

a synchronous fashion. The interleaver permutes the data bits

before feeding to the other three encoders. The block interface

for the interleaver is shown in Figure 4.

The design is based on random interleaving. A counter

starts to increment as soon as data stream is input. As the

counter progresses the input data is at first copied at the

interleaved addresses stored in the look-up table (LUT). Once

this process completes for the whole frame, the interleaved

data starts to output as a stream. The main advantage of using

LUT based interleaver is that we can change the interleaver

algorithm any time and accordingly generate addresses and

store them in an LUT, rather than having a particular logic

Fig. 4. Interleaver Block Interface

for interleaver. Moreover, there is no need for a separate

design for deinterleaver. Only the addresses in the LUT have

to be changed as per deinterleaving logic which can be pre-

calculated using a software routine.

The block interface of the decoder is shown in Figure 5.

Fig. 5. Decoder Block Interface

The schematic diagram in Figure 6 shows the various

component SISO decoders. Since the encoder configuration

is ACC-ACC-FF-ACC, the configuration of the corresponding

SISO decoders is also the same. The extrinsic information

from each of the decoders is added in the ExInfo Add

module and fed to the component SISO decoders in the

next iteration after suitable deinterleaving/interleaving process

embedded within the block. All the interleaving operations

on the received channel LLRs are assumed to be external to

the decoder block and performed by a separate block that

acts as a control unit to the whole decoding operation. The

control unit also runs the decoder for a specified number

of iteration. Each of the SISO decoder comprises of its

own Gamma (path metrics), Alpha (forward recursion), Beta

(backward recursion) and LLR calculation units along with

their associated memories required for the metrics storage.

Since for the current configuration of multiple turbo codes,

no systematic bits are transmitted; hence at the decoder side

they are treated as if all are punctured. In such a case the

channel LLR for systematic bits are all assumed to be zero

for calculations of various metrics. This in effect eases the

requirement for various arithmetic operations and saves in

the critical calculation paths. Each of the SISO unit produces

interleaved versions of the extrinsic information to be fed to

other three SISO component decoders.

The block interface of a SISO component decoder along

with port definitions is shown in Figure 7.

The basic blocks in a SISO decoder are Gamma, Alpha,

Fig. 6. Decoder Schematic

Fig. 7. SISO Block Interface

Beta and LLR calculation units (Figure 8). The Gamma Unit

computes the branch metric γ in log-domain.

The Alpha unit computes the forward state metric α in log-

domain.

Beta & LLR computation unit computes the backward state

metric β and the final LLR of bit uk in log domain.

The details of the computation that takes place in the

Gamma, Alpha, Beta & LLR units along with their block

interface is given in [24].

The block has in-built provision for storing the γ and α
values in their respective RAMs. The LLR values are calcu-

Fig. 8. SISO Schematic

lated simultaneously along with the β values during backward

recursion and stored in a RAM. The final extrinsic information

to be passed to other decoders is calculated by subtracting

the previous iteration extrinsic information from the ones

computed and stored in the RAM and further scaling by a

factor equal to 0.75. The scaling factor is easily implemented

by addition of 1-bit and 2-bit right shifted results of the

value. Suitable deinterleaving/interleaving operation for those

extrinsic values is also performed in this block to be passed

to other three decoders.

During the VHDL development of the rate 1/2, 2-state 4-

parallel multiple turbo codes, some modifications were done

that led to an optimized implementation in terms of both

speed and area. This was possible because of the simple

trellis structure of 2-state ACC and FF encoders. For MAX-

Log-MAP algorithm, while calculating forward and backward

state metrics (α & β) only the relative difference between

the different state metrics is significant. Hence, we did a

dynamic normalization by subtracting the metric for state 0

from both state metric values. This meant that the state metric

for state 0 was normalized to 0 and doesn’t need any storage

in the RAM and also did not appear in all the computations

(addition/subtraction) in subsequent operations. This led to

a significant reduction in memory storage requirement for

metrics and lot of savings in arithmetic operations leading to

faster logic implementation. These methods also enabled us to

keep the metric values within the limits and the metrics were

efficiently represented with minimum possible bits.

IV. RESULTS

We present here the post synthesis complexity comparison

chart for the encoders in Figure 9, a single SISO unit in Figure

10 and the full decoder in Figure 11 for a frame length of

256. An 8-state 3GPP decoder was designed and synthesized

for comparison and to bring out the benefits of multiple turbo

codes over the standard 8-sate 3GPP turbo code in terms of

hardware complexity. The designs were targeted to the Xilinx

Virtex-5 device family. The design tools used were Xilinx ISE

10.1 for design entry, ModelSim SE 6.1 for simulation and

XST for synthesis.

Fig. 9. Encoder Complexity Comparison

Shown in Figure 11 is the complexity comparison for the

full decoder obtained from the synthesis reports. The simpler

and less complex 2-state structure with optimizations led

to a lower complexity implementation over the standard 8-

state 3GPP Turbo code. We can see significant reduction in

implementation complexity in terms of both the number and

Fig. 10. Single SISO Unit Complexity Comparison

Fig. 11. Decoder Unit Complexity Comparison

the type of arithmetic units required for the implementation.

Moreover, the fMAX obtained after synthesis is considerably

higher.

The overall latency of our implementation of the decoder for

the 2-state multiple turbo codes design is given by Equation1:

L = FL× 2 + 5 (1)

where, L is the latency for the decoder in number of clock

cycles/iteration and FL is the frame length.

Hence, for frame length = 256 the latency is 517 clock

cycles/iteration. This means operating at fMAX =116.089

MHz, the decoding time per iteration is equal to 517 * f−1

MAX

= 4.4534 µs/iteration. It may be noted the decoding time

is dependent upon the frame length. As the frame length

increases, the decoding time also increases per iteration. The

calculation of the throughput in terms of bits/s for a total of

I iterations of the decoder proceeds as per the Equation 2 :

T =

[

f

L× I

]

× FL (2)

The total metrics memory requirement for a single component

SISO decoder is given by Equation 3:

M = [γ × FL× States + α× FL× States (3)

+LLR× FL]×No Of SISO Units

For our current implementation, frame length FL=256 and

total decoder iterations I=14. Hence, the throughput is:

T =

[

116.089

517× 14

]

× 256 = 4.11 Mbps

Since, for the 2-state decoder, only one state metric storage is

required due to dynamic normalization and 5-bits are used for

Gamma, and 6-bits each for Alpha and Extrinsic values, the

total metrics memory requirement comes to be: M =[5*256*2

+ 6*256*1 + 6*256] * 4 = 22.528 kbits. In contrast, the 8-

state 3GPP decoder requires M =[(8+9)*256*8 + 11*256] *

2 = 75.264 kbits.

It can be seen that the implementation costs are significantly

reduced in case of 2-state multiple turbo codes as compared

to the standard 8-state 3GPP Turbo code. This is mainly

because of the savings in the memory due to dynamic metric

normalization. The normalization reduced the metric storage

requirements for 2-state 4-parallel turbo codes significantly

since values for only one of the two states need to be stored.

The logic burden was thus reduced and this resulted in smaller

and faster logic implementation. As a result, the whole decoder

design could be easily fitted into one device as compared to

the 8-state 3GPP Turbo code.

REFERENCES

[1] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon limit error
correcting coding and decoding: Turbo codes. In Proceedings of the

IEEE International Conference on Communications, pages 1064–1070,
Geneva, Switzerland, May 1993.

[2] 3rd Generation Partnership Project. Technical specification group radio
access network: Multiplexing and channel coding (FDD). 3GPP TS
25.212 V3.1.0, 1999.

[3] W. E. Ryan. Wiley Encyclopedia of Telecommunications, chapter
Concatenated Codes and Iterative Decoding. John Wiley and Sons, 2003.

[4] J. Hagenauer and P. Hoeher. A Viterbi algorithm with soft-decision
outputs and its applications. In Proceedings of the IEEE GLOBECOM,
volume 3, pages 1680–1686, Dallax, Texas, nov. 1989.

[5] M. A. Castellon, I. J. Fair, and D. G. Elliott. Fixed-point turbo decoder
implementation suitable for embedded applications. In Proceedings of

the IEEE Canadian Conference on Electrical and Computer Engineer-

ing, Saskatoon, CA, may 2005.
[6] G. Montorsi and S. Benedetto. Design of fixed-point iterative decoders

for concatenated codes with interleavers. IEEE Journal on Selected

Areas in Communications, 19(5):871–882, 2001.
[7] G. Masera. Turbo Code Applications: A Journey from a Paper to

Realization, chapter VLSI for Turbo Codes, pages 347–382. Springer,
2005.

[8] M. C. Valenti and J. Sun. The UMTS turbo code and an efficient de-
coder implementation suitable for software-defined radios. International
Journal of Wireless Information Networks, 8(4):203–215, oct. 2001.

[9] Y. Tong, T. Yeap, and J. Chouinard. VHDL implementation of a turbo
decoder with log-map-based iterative decoding. IEEE Transactions on

Intrumentation and Measurement, 53(4):1268–1278, aug. 2004.
[10] M. J. Thul and N. Wehn. FPGA implementation of parallel turbo-

decoders. In Proceedings of the Symposium on Integrated Circuits and

Sytems Design, pages 198–203, Brazil, sep. 2004.
[11] W. Tang. A low-power implementation of turbo decoders. Master’s

thesis, Dept. of Electrical Engineering at Linkoping University, apr.
2007.

[12] W. J. Gross and P. G. Gulak. Simplified MAP algorithm suitable for
implementation of turbo decoders. IEE Electronics Letters, 34(16):1577–
1578, 1998.

[13] B. Classon, K. Blankenship, and V. Desai. Turbo decoding with the
constant-Log-MAP algorithm. In Proceedings of the 2nd International

Symposium on Turbo Codes & Related Topics, pages 467–470, Brest,
France, sep. 2000.

[14] S. Papaharalabos, P. Sweeney, and B. G. Evans. Constant log-MAP
decoding algorithm for duo-binary turbo codes. IEE Electronics Letters,
42(12):709–710, jun. 2006.

[15] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal decoding of linear
codes for minimizing symbol error rate. In IEEE Transactions on

Information Theory, volume IT-20, pages 284–287, March 1974.
[16] D. Divsalar and F. Pollara. Multiple turbo codes. In Proceedings of the

14th Military communications conference, MILCOM, pages 279–285,
1995.

[17] P. C. Massey and D. J. Costello Jr. New low-complexity turbo-like codes.
In Proceedings of the IEEE Information Theory Workshop, pages 70–72,
Cairns, Australia, September 2001.

[18] D. J. Costello Jr., A. Banerjee, C. He, and P. C. Massey. A comparison of
low complexity turbo-like codes. In Proceedings of the 36th Asilomar

Conference on Signals, Systems, and Computers, Pacific Grove, CA,
November 2002.

[19] S. ten Brink. Convergence of iterative decoding. In Electronic Letters,
volume 35, pages 806–808, May 1999.

[20] S. ten Brink. Convergence behavior of iteratively decoded parallel con-
catenated codes. In IEEE Transactions on Communications, volume 49,
pages 1727–1737, October 2001.

[21] C. He, A. Banerjee, D. J. Costello Jr., and P. C. Massey. On the
performance of low complexity multiple turbo codes. In Proceedings of

the 40th Annual Allerton Conference on Communication, Control, and

Computing, October 2002.
[22] J. Han and O. Y. Takeshita. On the decoding structure of multiple

turbo codes. In Proceedings of the IEEE International Symposium on

Information Theory, page 98, Washington D.C., June 2001.
[23] P. C. Massey and D. J. Costello Jr. Turbo codes with recursive non-

systematic quick-look-in constituent codes. In Proceedings of the IEEE

International Symposium on Information Theory, page 141, Washington,
D.C., June 2001.

[24] Vikas Bhatia. VHDL implementation of two-state multiple turbo codes.
Master’s thesis, Department of Electrical Engineering, Indian Institute
of Technology, Kanpur, may 2009.

