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Abstract—The Diversity Multiplexing Tradeoff (DMT) [1] is
a compact, yet elegant framework to capture the performance
of wireless communication systems at asymptotically high signal
to noise ratios (SNR). Recent application of DMT at finite SNR
[2] makes the DMT a versatile framework. We have analyzed
the DMT for the rate-adaptive SIMO maximal-ratio combining
(SIMO-MRC) for asymptotic and non-asymptotic signal to noise
ratios. This has resulted in arriving at closed form expression
of the diversity gain. The DMT arrived by analysis using the
non-asymptotic finite SNR framework is found to be consistent
with the known interpretations arrived through the asymptotic
high-SNR framework [1]. The results of this analysis have been
presented in this paper.

I. INTRODUCTION

A. Diversity Multiplexing Tradeoff

With increasing demand for data rates in wireless commu-

nication systems, multiple antennas play a significant role.

Though multiple antennas provide diversity as well as multi-

plexing gain, Zheng and Tse [1] provide a fundamental trade-

off between these, that any coding scheme can achieve. This

is the diversity and multiplexing tradeoff (DMT) framework

proposed in [1] at asymptotically high signal to noise ratios.

We provide a brief overview of the DMT of a MIMO

channel. The quasi-static, frequency flat MIMO channel, with

N transmit and M receive antennas is described by

Y =

√
SNR

N
HX + W (1)

Each of the terms in Eq. (1) is a matrix, Y and W is M × T
whereas H is M × N and X is N × T . The quasi-static

interval T indicates the coding block length. H and W have

independent entries from a complex Gaussian distribution,

[hi,j ] ∼ CN (0, 1), [wi,j ] ∼ CN (0, 1). Assuming a scheme

of codes which has rate increasing with signal to noise

ratio (SNR), the diversity (d) is defined as the exponent of

the average probability of error (Pe) curve [1]. The spatial

multiplexing gain (r) provides the degrees of freedom. Here

R is the data rate which increases with SNR.

d = − lim
SNR−→∞

log(Pe(SNR))
log(SNR)

r = lim
SNR−→∞

log(R(SNR))
log(SNR)

(2)

For each r, d∗(r) is defined to be the supremum of the

diversity advantage achieved over all schemes. Using these

definitions and under the condition T ≥ M + N − 1, the

optimal curve d∗(r) for the above MIMO system, is a piece-

wise linear function connecting the points (k, d∗(r)), k =
0, 1, .., min{M, N} where

d∗(k) = (M − k)(N − k) (3)

Eq. (3) provides the optimal DMT curve for the MIMO

system described above. The optimal DMT curve changes with

the change in distribution (pdf) of the channel [8], and also

depends on the asymptotic or nonasymptotic nature of signal to

noise ratios [3]. In [3] the definitions in Eq. (2) are generalized

for finite signal to noise ratios. The multiplexing gain r at finite

signal to noise ratio is defined with respect to the capacity of

an AWGN channel.

r =
R

log2(1 + gρ)
(4)

where R is the data rate, ρ is the signal to noise ratio and g is

the array gain. The array gain is introduced at the receiver to

take care of low signal to noise ratios. Typically g is considered

equal to M [3]. The diversity gain d(r, ρ) at rate r and finite

signal to noise ratio ρ as defined in [3] is

d(r, ρ) = −ρ
∂

∂ρ
lnPout(r, ρ) (5)

B. Receive Diversity Combining Schemes

Receive diversity combining schemes are very well studied

in terms of their BER and outage probability performance.

Simon et.al. [6] provide an exhaustive study of these schemes.

We look at the maximal-ratio combining (MRC) scheme

and analyze it using the DMT framework. We consider a

transmitter with single transmit antenna and multiple receive

antennas (SIMO) and perform MRC at the receiver. The SIMO

system is shown in Fig. 1. The signal being received at all the

M antennas is combined coherently with suitable gains. This

is the MRC receiver which is shown in Fig. 2. The antenna

gain selection is detailed in [5].

C. Prior Work

[6] provides performance analysis of diversity combining

schemes in terms of BER and outage probability. Schemes
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Fig. 1. SIMO system with single transmit and M receive antennas

like MRC, coherent and noncoherent Equal Gain Combining

(EGC), Selection Combining (SC), switched and hybrid di-

versity have been analyzed. Impact of fading correlation and

effect of channel estimation error is also considered. BER and

Outage Probability expressions for MRC have been derived.

Asymptotic high signal to noise ratio DMT framework

has been used to analyze performance of MIMO systems,

in particular, orthogonal designs of space-time codes (e.g.

Alamouti code), V-BLAST and D-BLAST schemes [1]. [2]

analyzes the orthogonal space time block codes (OSTBC)

and spatial-multiplexing horizontal encoding (SM-HE) at finite

signal to noise ratios. The DMT of OSTBCs at asymptotically

high signal to noise ratios as well as finite SNRs is analyzed

in [9] in the presence of correlated Nakagami-m fading.

Our contribution is in the analysis of the DMT of SIMO-

MRC diversity combining scheme at asymptotically high SNR

as proposed in [1] and also at finite SNR as proposed in [2].

Typically the outage probability of the diversity combining

schemes is defined in terms of a threshold SNR which is a

fixed value of SNR [5], [6]. This fixed value of SNR depends

on the required BER performance. In this paper we take

an information theoretic approach of analysis of the outage

probability of SIMO-MRC.

This approach is independent of a fixed threshold SNR value

and hence more versatile. The paper relates the two approaches

adopted by [4] and [5] to define the outage probability and

combines them using the DMT framework (see Eq. (9) and

(10)). The paper also provides a bird’s eye view of the diversity

as well as multiplexing gain provided by the SIMO-MRC

scheme when compared with the optimal tradeoff.

Notation: SNR denotes an asymptotically high signal to

noise ratio. ρ denotes a non-asymptotic finite signal to noise

ratio.

II. SYSTEM MODEL

A SIMO system with a single transmitter and M receive

antennas as in Fig. 1 is considered. The received signal is

given as

y =
√

SNR h x + n = z + n (6)

In Eq. (6), y, h, n, z are M×1 vectors. The channel coefficients

on each of the path i are independent with circular symmetric

complex Gaussian distribution hi ∼ CN (0, 1) ∈ h. Noise

is independent with circular symmetric complex Gaussian

distribution ni ∼ CN (0, 1) ∈ n. At the receiver, each path

i is weighted by coefficients αi as shown in Fig. 2.

αi = ai exp{−jθi} where i = 1, 2...M

Fig. 2. Linear Combiner for SIMO-MRC

ai is the weighing coefficient on the ith antenna at the receiver.

θi is the phase of the incoming signal on the ith antenna

at the receiver. The following assumptions are made at the

transmitter [1].

• The transmit signal x is normalized to have average

transmit power of ‘1’ in symbol. Hence E|x|2 = 1.

• SNR denotes the average signal to noise ratio at each

receive antenna.

• A code whose rate increases as R = r log(SNR) is

assumed at the transmitter.

The following assumptions are made at the receiver [5].

• The exact instantaneous channel knowledge is available

at the receiver.

• The antenna outputs are co-phased by multiplying each

by exp{−jθi}.

• The combiner output at the receiver provides the envelope

of the received signal which is weighted by ais.

III. ANALYSIS FOR SIMO-MAXIMAL RATIO COMBINING

In MRC, the output of combiner in Fig. 2 is a summation

of the signals on all the paths. From Eq. (6), let ri = |hi| i =
1, ...M

yi = zi + ni =
√

SNR ri exp{jθi} x + ni (7)

The envelope at the combiner output assuming co-phasing of

antennas is

z =
∑

i

zi = x
√

SNR

M∑

i=1

riai

From [5], signal to noise ratio is maximized at the output of

the combiner when a2
i = z2

i

N where N is the total noise power.
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The SNR at the combiner output is

γE =
1
N

M∑

i=1

z2
i =

M∑

i=1

γi

In the above equation, γi represents the signal to noise ratio

on each antenna. From [5] the probability distribution function

(pdf) of the SNR at the output of the combiner (γE) for SIMO-

MRC is is

pγE (γ) =
γM−1e−γ/γ̄

(γ̄)M (M − 1)!
(8)

where γ̄ is the average branch signal to noise ratio on each

branch. This is a Chi-squared distribution with 2M degrees of

freedom.

A. Outage Probability of SIMO-MRC at asymptotically high

signal to noise ratios

The outage probability in terms of a threshold signal to

noise ratio γo [5] is

Pout(γo) = Pr(γE < γo) (9)

In terms of mutual information (I(X ; Y )) the outage proba-

bility is defined as [4]

Pout(R) = Pr
(
I(X ; Y ) < R

)
(10)

where R is the data rate. We relate these two definitions of

outage probability using the DMT framework. From Fig. 2, at

the receiver, the mutual information is given as

I(X ; Y ) = log(1 + γE) (11)

According to the above assumptions, at the transmitter the data

rate of the codes increases as R = r log(SNR).

Pout(r, SNR) = Pr

(
log(1 + γE) < r log(SNR)

)

At high SNR,

Pout(r, SNR) ≈ Pr(γE < SNRr) (12)

From Eq. (8) and (9) and [5], the outage probability of SIMO-

MRC is given by

Pout,MRC(γo) = 1− e−
γo
γ̄

M∑

k=1

(γo/γ̄)k−1

(k − 1)!
(13)

For a SIMO system, the maximum multiplexing gain from Eq.

(3) for k = 0 is rmax = min{1, M} = 1, hence 1 − r ≥ 0.

From Eq. (9), (12) and (13), identifying γo = SNRr and

γ̄ = SNR

Pout,MRC(r, SNR) ≈ 1− e
−1

SNR1−r

M∑

k=1

( 1
SNR1−r )k−1

(k − 1)!
(14)

B. DMT of SIMO-MRC at asymptotically high-SNRs

From Eq. (2), diversity gain is defined as

d = − lim
SNR→∞

log(Pe(SNR))
log(SNR)

According to [1], it is very likely that a detection error occurs

when conditioned on the channel outage event. Therefore,

the outage probability is a lower bound on the average error

probability. Hence in practice, the negative of SNR exponent

of Pout(r), defined below, is considered as diversity gain.

d(r) = − lim
SNR→∞

log Pout(r, SNR)
log SNR

(15)

= − lim
SNR→∞

[
SNR

Pout(r, SNR)

×∂Pout(r, SNR)
∂SNR

]

= lim
SNR→∞

[ −SNR(r − 1)
Pout(r, SNR)(M − 1)!

× e−SNRr−1

SNR(1+M−rM)

]

= −(r − 1) lim
SNR→∞

(M − SNRr−1)

= −(r − 1) M − lim
SNR→∞

1
SNR1−r

= M(1− r) (16)

Eq. (16) gives the diversity and multiplexing tradeoff for

SIMO-MRC scheme for the asymptotically high-SNRs. This is

also the optimal diversity and multiplexing tradeoff for SIMO

system for the asymptotically high-SNRs [[7], Chapter 9].

d∗(r) = M(1− r) where 0 ≤ r ≤ 1 (17)

C. Outage Probability of SIMO-MRC at finite signal to noise

ratios

From Eq. (4) and (10) and (11), at finite-SNRs we have,

Pout(r, ρ) = Pr
(
log(1 + γE) < r log(1 + gρ)

)

Pout(r, ρ) = Pr
(
γE < (1 + gρ)r − 1

)
(18)

Note that for finite signal to noise ratio case, γo = (1+gρ)r−1
and γ̄ = ρ. In order to simplify the diversity multiplexing

gain tradeoff at finite signal to noise ratio, we define another

variable

ρr =
(1 + gρ)r − 1

ρ
(19)

From Eq. (14) and (18)

Pout,MRC(r, ρ) = 1−
[
e−

(
(1+gρ)r−1

ρ

)

M∑

k=1

(
(1 + gρ)r − 1

ρ

)k−1 1
(k − 1)!

]

= 1−
[
e−ρr

M∑

k=1

(
ρr

)k−1 1
(k − 1)!

]
(20)
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Fig. 3. DMT for SIMO-MRC at finite signal to noise ratios (ρ) for M=4
compared with DMT at asymptotically high-SNR

D. DMT of SIMO-MRC at finite signal to noise ratios

From Eq. (5), (20) and (19) the diversity multiplexing

tradeoff at finite signal to noise ratio of SIMO-MRC scheme

is given by

d(r, ρ) =
[ −e−ρr(ρr)M−1

(
1− e−ρr

∑M
k=1

(
ρr

)k−1 1
(k−1)!

)

(1 + (1 + gρ)r−1(rgρ− gρ− 1)
ρ(M − 1)!

)]
(21)

1) Finite signal to noise ratio DMT of SIMO-MRC at r=0:

From Eq. (19), it is seen that r = 0 leads to ρr = 0. Hence

from Eq. (21), it is clear that at r = 0 i.e. zero multiplexing

gain, leads to an undefined diversity gain at all signal to noise

ratios (ρ). In order to derive the value of diversity gain at

r = 0 and any ρ,

d(0, ρ) = lim
r→0

d(r, ρ)

= lim
r→0

[ −e−ρr
(
ρr

)M−1

(
1− e−ρr

∑M
k=1

(
ρr

)k−1 1
(k−1)!

)

(1 + (1 + gρ)r−1(rgρ− gρ− 1)
ρ(M − 1)!

)]

= M

(
1− gρ

(1 + gρ)(log(1 + gρ))

)

Eq. (21) is plotted in Fig. 3 for different values of signal to

noise ratios ρ and r. This includes the value of diversity gain

d(0, ρ). The array gain used is g = M for SIMO-MRC [5].

E. Asymptotic High-SNR DMT from DMT at finite signal to

noise ratio

At high-SNR asymptotic values we assume ρ →∞. Hence

it follows that

(1 + gρ)r − 1 → (1 + gρ)r

(1 + gρ

ρ

)r → gr

With ρ →∞, Eq. (21) can be expressed as

lim
ρ→∞

d(r, ρ) =

= lim
ρ→∞

−(r − 1)grMe
−(gρ)r

ρ ρM(r−1)

(
1− e

−(gρ)r
ρ

∑M
k=1

(gρ)r(k−1)

(ρk−1)(k−1)!

)
(M − 1)!

= lim
ρ→∞

−M(r − 1) +
gr(r − 1)
ρ(1−r)

= M(1− r) (22)

This is same as Eq. (17) which gives the optimal tradeoff as

asymptotic high-SNR.

F. Observations

For a rate adaptive SIMO-MRC scheme, it is observed that

the DMT, derived from the outage probability, at asymptoti-

cally high signal to noise ratio is the same as optimal DMT.

This is observed from Eq. (16) and Eq. (17). Hence the rate

adaptive SIMO-MRC scheme is asymptotically optimal in the

DMT framework. Since Eq. (22) is also same as Eq. (17), the

DMT at finite signal to noise ratios also leads to the optimal

DMT in the asymptotic sense. From Fig. 3, it is seen that for a

rate adaptive SIMO-MRC scheme, the diversity gain at a fixed

r and fixed SNR ρ is always less than the optimal diversity

gain.

The DMT analysis has a useful application. The finite-SNR

diversity gain provides an estimate of the additional power

required to decrease the outage probability by a target amount.

This diversity characterization is useful in determining suitable

rate adaptation strategies at realistic SNRs [3].

As mentioned in Section I.C, [6] provides the performance

of SIMO-MRC in terms of BER or outage probability. But the

diversity performance of SIMO-MRC provided in [6] cannot

be directly compared with the diversity performance provided

by the DMT in Fig. 3. This is due to the fact that the previous

analysis of SIMO-MRC in [5], [6] are for fixed rate systems

whereas the DMT analysis performed on SIMO-MRC gives

the performance of the SIMO-MRC for a rate-adaptive system.

IV. CONCLUSION

Under the assumption of a rate-adaptive system, the closed

form expression for DMT of SIMO-MRC at finite signal

to noise ratios has been derived. Upon comparison of the

diversity gain at a fixed and finite signal to noise ratio with

the optimal diversity gain in the asymptotic high-SNR case

indicates that even for a signal to noise ratio of around 30 dB,

the rate adaptive SIMO system cannot achieve the optimal

diversity gain. Future work includes the analysis of the DMT

of other rate-adaptive SIMO diversity combining schemes at

finite signal to noise ratios.
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