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Abstract : This paper presents Higher Order Spectral Analysis 
(HOSA)  and Artificial Neural Network techniques for 
identification of LPI (Low Probability of Intercept) Radar signal. 
Common Spectral analysis and conventional methods fail to detect 
low powered emissions of LPI Radars and even normal radars in 
noisy environments. This leads us to use Higher Order Spectral 
Analysis (HOSA) techniques (bi-spectrum, bi-coherence etc.,) 
enabling us to extract much more information from the same 
intercept and hence facilitating detection. Different types of  radar 
waveforms used by LPI radars (e.g, pulse, LFM, phase coded 
using Barker code or Frank code etc.,) are simulated and then 
analyzed by bi-coherence analysis technique. An Artificial Neural 
Network (ANN) is trained on the results obtained by bi-coherence 
analysis, so that it will be able to detect and identify the LPI radar 
signal whose type is unknown when received. The results obtained 
clearly indicate the promising capability of the HOSA techniques 
to identify the type of LPI signal even with SNRs as low as –3 dB. 

 
I. INTRODUCTION 

 
The important advantage of a  LPI (Low Probability of 
Intercept) radar is to go undetected, while maintaining a strong 
battlefield awareness. Many users of Radar today are 
specifying LPI and LPID (Low Probability of Identification) as 
important tactical requirements. The term LPI is that property 
of a radar that, because of its low power, wide bandwidth, 
frequency variability, or other design attributes, makes it 
difficult for it to be detected by means of a passive intercept 
receiver. Many combined features help the LPI radar prevent 
its detection by modern intercept receivers. These features are 
centered on the antenna (antenna pattern and scan patterns) and 
the transmitter radiated waveform [1]. 

 
The LPI antenna must have a transmit radiation pattern with 
very low side lobes. The low side lobes in the transmit pattern 
reduce the possibility of an intercept receiver detecting the 
radio frequency (RF) emissions from the side lobe structures of 
the antenna pattern. A level of -20 dB is normally acceptable, 
but with LPI radar, ultra low side lobes are required (-45 dB). 

 
Intercept receivers use a variety of strategies to identify radars 
based on their  Angle of Arrival,  Carrier Frequency, Scan 
Rate, Bandwidth, Modulation Period, Polarization etc., These 
properties of radiated waveforms make the radar susceptible to 

detection. Randomly altering one or more of these parameters 
can provide confusion to the intercept receivers.  

 
II.  LPI RADAR SIGNALS 

 
LPI Radars use continuous wave (CW), wide bandwidth low 
power signals of the order of a few watts making its detection 
difficult. Conventional radar uses coherent pulse train and has 
independent control over range and Doppler resolution. In 
modulated CW signals, the average-to-peak power ratio is 1 or 
100% duty cycle. This allows a  considerably lower transmit 
power to maintain the same detection performance as the 
coherent pulse train, LPI radars use periodically modulated CW 
signals resulting in large bandwidths and smaller resolution 
cells . There are many modulation techniques that provide a 
wideband LPI CW transmit waveform. For the intercept 
receiver to demodulate the waveform, the particular modulation 
technique must be known (which is typically not the case) 
 
The wideband  CW techniques include: 
 

1. Linear, nonlinear frequency modulation (FMCW) 
2. Phase modulation (PSK, polyphase codes) 
3. Frequency hopping (FSK), Costas sequence 
4. Combined phase modulation and frequency hopping 
5. Random signal modulation 

 
A. Pulse Waveform 
 
The Pulse is the most common form of radar signals. However 
they are also very susceptible to jamming due to their very 
predictable nature. In a simple pulse waveform, the amplitude 
and phase of the pulses do not vary with time. Due to the 
discontinuous pulses, we can get range information about the 
target. Similarly by aggregating a large number of pulses, we 
can obtain the Doppler information as well. 

 
B. Linear FM (LFM) 
 
This signal is used in FMCW radars. The signal amplitude is 
kept constant with a varying frequency. Due to this change in 
frequency, there is a continuous variation in phase.  
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C. Barker code 

Bi-phase codes are widely used for pulse compression in radar 
systems. Barker codes are especially preferred in these 
applications because it achieves the best possible mainlobe to 
sidelobe ratio. Barker codes are the only known bi-phase codes 
with the smallest achievable side lobes. However, the longest 
known Barker code is of length 13.  

D. Frank Code 

Codes that use any harmonically related phases based on a 
certain fundamental phase increment are called poly-phase 
codes. Frank code is a very popular poly-phase code. In this 
case, a single pulse of width τ’ is divided into N equal groups; 
each group is subsequently divided into other sub-pulses each 
of width Δτ. Therefore, the total number of sub-pulses within 
each pulse is N2, and the compression ratio is ζ = N2.  A Frank 
code of N2 sub-pulses is referred to as an N-phase Frank code 
with fundamental phase increment Δφ.= 360 /N 

E. Costas Code 

The Costas code is a type of Stepped Frequency Waveform. In 
SFW, a relatively long pulse of length τ is divided into N sub-
pulses, each of width τ1 (τ’ = N τ1). Each group of sub-pulses is 
called a burst. Within each burst the frequency is increased by 
Δf from one sub-pulse to the next. The overall burst bandwidth 
is NΔf. 

F.  P4 Code 

P4 (poly-phase 4)This code is derived by converting a linear-
frequency modulation waveform to base band using a local 
oscillator on one end of the frequency sweep and sampling the 
I and Q video at the Nyquist rate. With this frequency, the 
phases of successive samples for an N bit code are 
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III. IMPLEMENTATION DETAILS 

 
A. Simulation of LPI Radar Signals and calculation of 
Ambiguity function 
 
For testing the algorithms of HOSA, a large database of sample 
LPI waveforms is required. These waveforms are simulated 
with the facility to customize the waveforms and to vary 
various parameters and for adding noise. Autocorrelation, 
Ambiguity functions [2],[3] can be calculated for the LPI 
waveforms generated.  A Graphical User Interface (GUI) for 
simulation of LPI radar signals has been developed. The GUI 
allows choosing one of many preset signals, or defining a new 

signal through its amplitude, phase and frequency vectors. With 
this GUI  the following types of ideal signals can be generated. 
All these waveforms can be modified in terms of Amplitude, 
Phase, Frequency, Number of Bits, Max. Doppler shift for 
ambiguity plot, Max Delay, No. of  positive Doppler shifts etc., 

 
1. Pulse 
2. Linear FM 
3. Barker 13 
4. Costas 
5. Frank 
6. P4 
 

Pulse is also included here to test for no modulation ( phase / 
frequency) cases. 
 
B. Bi-Coherence analysis technique 

The radar ambiguity function [2],[3] for the signal is defined as 
the modulus squared of its 2-D correlation function. The data 
of the ambiguity function is processed by the Bi-coherence 
analysis algorithm [4] to extract the useful information from 
the signal using.  The algorithms [5] use 128 point FFT. The 
flow chart for the bi-coherence computation is shown in Figure 
1. The Bi-coherence images (2D plots) produced are unique for 
each LPI signal and serve as a signature. An experienced 
operator can quickly identify the type of modulation by looking 
at these plots. Figure 2 shows the bi-coherence  plots of all the 
signals. 
 
C. Artificial Neural Networks for LPI  identification. 
 
The LPI waveform signatures generated by the HOSA 
algorithms are used to train a Multi-layer Feed Forward Neural 
Network with back-propagation for automatic identification 
and classification of the analyzed waveforms. The Network 
architecture is shown in figure 3. Table.1 shows the 
identification ability of ANN with Bi-coherence signatures as 
input to the trained network. The values in the table indicate the 
confidence level with the algorithm identifies a signal. For 
example, the 3rd row of the table shows that when the Costas 
signal is loaded (as unknown), the network correctly identifies 
the LPI signal as Costas as an output by producing the largest 
output value of  0.9426 at that node. Table.2 shows the 
identification ability of ANN even with addition noise e.g., 
Frank signal. 
 

IV. CONCLUSION 
 
Higher order spectral analysis of the signals clearly demarcates 
one signal from the other even if noise levels are made greater 
than the signal. A multilayer feed forward neural network with 
supervised back-propagation training algorithm is used. After 
training, the network identifies the modulation types 
immediately when applied with the inputs. The neural network 
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based on bi-spectrum analysis gives an excellent performance 
with very low level SNR of zero dB and even lower. This 
system would be very efficient in identifying LPI radar signals.  
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Fig.3 Multi-Layer Feed Forward Neural Network  

 
2(b) LFM 
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2(c)  Costas 

 
2 (e)   Barker 13 

 

 
2 (d)   Frank (N=16) 

 
2(f)    P4 (N=8)

                    Fig 2.  Bi-coherence  plots of all the signals 
 

Table 1. Bi-coherence  based Neural Network Output 
         Output 
Input   

Pulse Linear FM Costas Barker Frank P4 

Pulse 0.9843 0.0011 0.0000 0.0006 0.0000 0.0035 
Linear FM 0.0000     0.9875     0.0014     0.0000     0.0001     0.0010 
Costas 0.0033     0.0051     0.9426     0.0428     0.0034     0.0000 
Barker 0.0000     0.0000     0.0453     0.9254     0.0004     0.0000 
Frank 0.0000     0.0143     0.0376     0.0312     0.8891     0.0045 
P4 0.0527     0.0045     0.0203     0.0201     0.0010     0.9875 

 
Table 2. Effect of Noise on Bi-coherence based Neural Network Output 

         Output 
Input  

Pulse Linear FM Barker Costas Frank P4 

Frank: 10dB SNR     0.0000     0.0000     0.0000     0.0000  0.7946     0.0112 
Frank:  0 dB SNR     0.0000     0.0000     0.0000     0.0000  0.5676     0.0021 
Frank: -3 dB SNR     0.0000     0.0000     0.0000     0.0000  0.4806     0.0034 
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