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Abstract— Synthetic aperture radars (SAR) are coherent imag-
ing systems that produce complex-valued images of the ground.
SAR images are corrupted by multiplicative noise (speckle Noise).
It is due to coherent processing where multiscatterers present in
a resolution cell. The presence of speckle in an image reduces the
resolution of the image and the detectability of the target. The
Multiwavelet transformations are useful for speckle reduction
through its sub-band images. The speckle noise variances are
estimated first using which donoho thereshold is computed. Then
transform coefficients are pruned to reduce the speckle noise.

The proposed method shows great promise to reduce the
speckle noise and evaluates the performance measure for dif-
ferent Multiwavelets. In this paper several thresholding scheme
are used with different Multiwavelets and Prefilters.

I. I NTRODUCTION

In the last two decades great improvements have been made
in SAR technology. It uses a coherent microwave sensor
that can penetrate foliage and clouds and operate day or
night because it provides its own illumination. An image is
computed after the SAR system receives the coherent sum
of reflected monochromatic microwaves. When the airborne
antenna moves, the phase of each elementary signal is modi-
fied according to the distance between the target and antenna.
The resulting signal is complex [1], with a phase uniformly
distributed on [0, 2π] and a magnitude having large random
variations. These produce strong granulation in image termed
as speckle.

The speckle noise complicates in interpretation of the im-
age since it obscures the scene content of the image, the
effectiveness of image segmentation and other information
extraction. Speckle reduction is a necessary procedure before
efficient class discrimination can be performed. The speckle
noise can typically be modelled as gamma distributed which
is the combination of chi-square and exponential distribution.
Logarithmic transformation of a SAR image converts the
multiplicative noise model to additive noise model.

The most well-known and widely used image-domain
speckle filter is the local statistics adaptive filter proposed by
Lee [2], which uses local statistics such as mean and standard
deviation on fixed-size window to determine the degree of
smoothing. Although the Lee filter can preserve steep edges,
the loss of fine details and the degradation of spatial resolution
may occur by using too large a window. But on the other side
the use of small window implies less suppression of speckle

noise in homogeneous area.The theory of adaptive window
solve the problem to some extent [3].

Incoherently averaging several frames obtained from a
portion of the available azimuth spectral bandwidth, this is
the base of multi-look SAR (spot-light mode) processing.
The Doppler frequency spectrum is divided into N segments,
then each segment is processed separately to form either an
intensity or an amplitude SAR image, and the N images are
summed together to form a N-look SAR image. This process
reduces the noise variance by a factor of

√
N , but it also

degrades the spatial resolution by a factor of N.
In this paper we use multiwavelets to despeckle the SAR.

A motivation for studying multiwavelets is the fact that it can
have simultaneously short support, orthogonality, symmetry
and high number of vanishing moments.

In this paper we provide a brief theory of multiwavelets in
section 2, and describe purposed method for despeckling in
section 3. The quantitative performance measure of different
multiwavelets is discussed in section 4. We conclude the paper
in section 5.

II. D ISCRETEMULTIWAVELET TRANSFORM

In DWT, integer translationφ(t) φ(t − k) construct a
subspaceV0. A subspaeVj is generated by usingφ(2jt− k),
j ∈ Z such that,

. . . V−1 ⊂ V0 ⊂ V1 ⊂ . . . ⊂Vj . . .

⋃j=∞
−∞ Vj = L2(R),

⋂j=∞
−∞ Vj = 0

A mother waveletψ(t) is defined to extract the high frequency
information. The subspace generated byψ(2jt− k), is called
Wj . That is

Vj+1 = Wj ⊕ Vj

Therefore

Vj+1 = Wj ⊕Wj−1⊕ . . . ⊕V1

However there is limit to the time-frequency localization
of a single wavelet [4]. Multiwavelets are the extension of
wavelets. Wavelets have an associated scaling functionφ(t)
and wavelet functionψ(t) while multiwavelets have two or
more scaling and wavelet functions. For notational conve-
nience the set of scaling functions can be written using the
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vector notationΦ(t) ≡ [ φ1(t) φ2(t) . . . φr(t) ] whereΦ(t)
is called the multiscaling function. Likewise the multiwavelet
function is defined from the set of wavelet functions asΨ(t) ≡
[ ψ1(t) ψ2(t) . . . ψr(t) ] . When r = 1, Ψ(t) is called a
scalar wavelet, or simply wavelet. While in principler can be
arbitrarily large, the multiwavelets studied to date are primarily
for r = 2.
The multiwavelet two-scale equations resemble those for
scalar wavelets

Φ(t) =
√

2
∑m−1

k=0 GkΦ(2t− k)

Ψ(t) =
√

2
∑m−1

k=0 HkΦ(2t− k),
Here {Gk} and {Hk} are matrix filters, i.eHk and Gk are
r × r low-pass and High-pass matrices respectively for each
integerk. The matrix elements in these filters provide more
degrees of freedom than a traditional scalar wavelet. These
extra degrees of freedom can be used to incorporate useful
properties such as orthogonality, symmetry, and high order of
approximation, Which are known to be important for image
processing. The key then is to find out how to make the
best use of these extra degrees of freedom. Using Fractal
interpolation Geronimo, Hardin, and Massopust (GHM)[5]
succeeded to construct multi-scaling functionφ1 (t) and
φ2 (t) as shown in Fig.1, and two mother wavelet functions
ψ1 (t) andψ2 (t), shown in Fig.2 wherer = 2 andm = 4.
The dilation and translation equations for this system have
four coefficients:
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The GHM multiwavelet has several remarkable properties.
Both scaling functions have short supports[0, 1] and
[0, 2] respectively, are symmetric and system has
second order of approximation and multiwavelets form
symmetric/antisymmetric pair. Translates of scaling function
and wavelets are orthogonal. This is not possible for single
wavelet.

The application of multiwavelets require that the input sig-
nal first be vectorized which is called preprocessing and better
known as multiwavelet initialization[6] or prefiltering. Here

Fig. 1. GHM Pair of Scaling Functionsφ1(t) andφ2(t)

Fig. 2. GHM Pair of Multiwavelets Functionsψ1(t) andψ2(t)
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Fig. 3. Result of one level 2D-DMWT decomposition

prefiltering has been done by algorithm given by Strela[7].The
prefilter output maintains the critical representation i.e if the
image input to prefilter of sizeM×N , then there will be four
filtered output subimages of size(M ×N)/4. The boundary
level of the image is assumed periodically extended for filter-
ing as given by Strang [8]. The theory of multiwavelets is also
based on the idea of Multiresolution Analysis (MRA) [4], just
like the scalar wavelet. The difference between them is that,
multiwavelets haver scaling functions. During a single level
of decomposition using scalar wavelet transform the image
is replaced with four blocks corresponding to the subbands,
representing either low-pass or high-pass in each direction.
Here in case of GHM or Chui and Lian [9] multiwavelets
have two channels(r = 2), so that there will be two sets
of scaling coefficient and two set of wavelet coefficients.
Each 2D-DMWT decomposition step results in 16 subimages
containing multiwavelet coefficients related to lowpass and
highpass filters shown as in Fig.3 Multiwavelet decomposi-
tion iterates on the low-pass coefficients from the previous
decomposition, the quarter image of low-pass coefficients is
actually a2 × 2 subbandL1L1, L2L1, L1L2and L2L2 The
next step decomposes the low-low pass subband matrix in
the similar way. No prefilter is performed for these later
decomposition. An N-level decomposition of a 2-D image
will produce 4(3N +1) subimages. Multiwavelets system can
simultaneously provide perfect reconstruction while preserving
length (orthogonality), good performance at the boundaries
(linear phase symmetry), and a high order of approximation
(vanishing moment).

III. D ESPECKLING OFSAR IMAGES

Here we first logarithmically transform the SAR image
so that the multiplicative noise (speckle noise) is approxi-
mated as additive noise. First prefiltering of logarithmically
transformed gray level (or intensity) of image with suitable
prefilter depending on what multiwavelets are used like GHM,
CL, Sa4 [10], Bih34 [11] and Cardbal4 [12] are computed.
Then decomposition of preprocessed image at different levels
is computed. Preprocessed image gets decomposed into six-
teen bands at each level. Low band contains approximation
(L1L1, L1L2, L2L1andL2L2) while the other bands consist
detail information(LiHj ,HiLjandHiHj i,j = 1,2). The noise

varianceσ2 in transformed coefficient is not known. This
has to be estimated first. In this case standard deviationσ
is estimated as the median absolute deviation of the diagonal
detail coefficients onHiHj i, j = 1, 2.

σ = Median(|Wij)|/0.6745,Wij ∈ subbandHiHj

T = γσ
√

2ln(n)/n

whereγ is a constant. Hereγ is taken mean of multiwavelet
coeffcients at the final level of decomposition.n is the number
of sample data. The thresholding of the subband coefficients
is taken according to the following method.
a) Scalar way of thresholding: There are two ways to apply
the threshold.

Soft thresholding:The function is defined as

H(x) =





x− T for x > T
0 for |x| ≤ T
x+ T for x < −T

Hard theresholding: The function is defined as

H(x) =





x for x > T
0 for |x| ≤ T
−x for x < −T

b) Vector thresholding with decorrelation : In this we perform
vector thresholding with decorrelation matrix of 2D multi-
wavelet transform coefficient [13]. Here scaling coefficients
remains untouched. After decorrelated the DMWT coefficients
we apply soft and hard threshold to get the significant coeffi-
cients.
Once the Transform coefficients are thresholded, then speckle
reduced image is obtained by synthesis part of DMWT coef-
ficients. The performance of speckle reduction quantitively is
evaluated in terms of Root mean square error (RMSE). RMSE
is computed for different multiwavelets with different possible
prefilter.

IV. SIMULATION STUDY AND DISCUSSION

The despeckling method described in previous section is
applied in experiment to a SAR image with size512 × 512
gray level. All the multiwavelets applied here for despeckling
have two vanishing moments. The multiwavelets are used with
repeated row (rr) and approximation prefilter (AP). In addition
the GHM multiwavelet can also be used with orthogonal
approximation prefilter (ORAP)[14]. For all cases, a five
level decomposition is used. In order to obtain the speckled
noisy image, gamma distributed speckle noise is generated
with variance 0.04 and mixed with SAR image. The results
are shown with GHM multiwavelet with repeated row (rr)
preprocessing. Original SAR image is shown Fig4. Image
with speckle noise with variance 0.04 is shown in Fig5. The
despeckled image with scalar soft thresholding is shown in
Fig 6. GHM multiwavelet with repeated row gives the best
result with scalar soft thresholding. Despeckling with scalar
hard and vector hard thresholding are shown in Fig 6. and
Fig 7 respectively. In Table I the type of multiwavelets, the
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Fig. 4. Original Image

Fig. 5. Speckled Image (σ2 = 0.04)

type of prefilter and type of thresholding method are given.
The results reveal Chui-Lian (CL) multiwavelet gives the
best performance with repeated row preprocessing with scalar
hard and vector hard thresholding. The performances of the
multiwavelets which are not good with scalar soft threshold,
are improved with the use of other methods.

V. CONCLUSION

In this paper we despeckled the SAR image with different
multiwavlets and with different prefilters. Performance are
measured with root mean square error (RMSE) comparison

Fig. 6. Despeckled Image Soft thresholding

Fig. 7. Despeckled Image Hard thresholding

TABLE I

RMSE WITH DIFFERENT MULTIWAVELET AND PREFILTER

MW Preflt scalar(sof) scalar(har) vector(har)

ghm ghmap 9.2715 8.8066 9.1502
ghm rr 8.4401 8.8066 8.6974
ghm ghmorap 10.1045 8.9168 9.8909
cl clap 10.3242 9.2655 8.9653
cl rr 8.4445 8.3201 7.8533

sa4 sa4ap 9.3122 8.9980 8.7822

in dB, of despeckled image and original image.
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