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Abstract— In this paper, a comparative study of a set of wavelet
filters used for wavelet based retinal image compression system
has been made. The performance of different wavelet filters is
observed by decomposing the retinal image to various levels for a
given compression ratio. The visual quality of the reconstructed
retinal image is observed at each decomposition level. The
statistical measures such as the peak signal to noise ratio (PSNR),
laplacian mean squared error (LMSE) and structural similarity
(SSIM) index are used to quantify the effect of wavelet filters.
The subjective evaluation is also done by examining the quality
of reconstructed image. The optimum decomposition level and a
best suited wavelet filter for the compression of a set of retinal
images can be chosen from the results presented in the paper.

I. INTRODUCTION

The digital imaging techniques are very advantageous in

medical applications. They are non-invasive, cause minimal

discomfort to the patients and provide flexible means for

anatomical or physiological analysis. The medical images thus

obtained are used for diagnosis of diseases. For example, the

retina- a layer of membrane at the back of the eye can be

visualized as a retinal image (or photograph) by the fundus

camera. Retinal images are widely used in the diagnosis and

treatment of various eye diseases. Medical images require large

storage space. The limited bandwidth and storage space calls

for the compression of images before transmission or storage.

The primary concern in compressing medical images is that,

the reconstructed image should not lose diagnostic information

required for the diagnosis of disease. Hence in medical image

compression it is a great challenge to have compression

methods that efficiently compress the image and still preserves

the diagnostic information [1]. In 2-D block transform based

compression methods, image data can be represented by

coefficients of discrete image transforms. Usually the image

is split into blocks of 8x8 or 16x16 pixels and then each

block is transformed separately. The compression is achieved

by discarding the transform coefficients that make only small

contribution to the total energy of the signal. However this

method does not take into account any correlation between

blocks and creates blocking artifacts, which are not good if

a smooth image is required. Over the past several years, the

discrete wavelet transform (DWT) has gained more attention

in image compression research. The DWT is applied to entire

image rather than sub-images and hence avoids blocking arti-

facts. The property of dual localization of a signal in both the

original and in the transformed domain by DWT makes it more

suitable compared to other transforms. DWT splits the original

image into several subband images and this decomposition is

similar to human visual system (HVS) recognition process [2].

In recent years, the sub-band or wavelet coding is being used

for lossy compression of medical images [3], [4], [5]. The

DWT based method draws great attention because of its energy

compaction capability, efficiency and easy implementation.

A wavelet based compression system consists of decompo-

sition of the signal using a type of wavelet filter, threshold-

ing and subsequent quantization of the wavelet coefficients

followed by an entropy coder [6], [7]. Very few works

based on wavelet transform are reported for retinal image

compression [8], [9]. However no systematic study has been

done to evaluate the performance of wavelet filters at various

decomposition levels and at different compression rates. The

intention of this paper is to compare and contrast the behavior

of few general types of wavelet filters at various image

decomposition levels. In this study, the wavelet compression

method, set partitioning in hierarchical trees (SPIHT) [10] is

applied to digital retinal images. The investigation starts by

selecting a wavelet filter for a given compression ratio (CR)

and examining the performance at different levels of image

decomposition. The comparative evaluation of wavelet filters

used in the compression method is investigated subjectively,

considering the visual image quality test and by numerically

computed objective measures, the peak signal to noise ratio

(PSNR), laplacian mean squared error (LMSE) and structural

similarity index (SSIM)-a HVS based quality measure [11].

The rest of the paper is organized as follows: Section 2

presents discrete wavelet transform (DWT) in image com-

pression, Section 3 briefs the image quality measures used

for evaluation, Section 4 contains the experimental results and

discussion and the conclusion in Section 5.

II. DWT BASED RETINAL IMAGE COMPRESSION

In DWT based coding, the entire image is transformed and

compressed as a single data object rather than block by block.

Hence, the typical blocking artifacts are avoided and better

quality can be obtained [3]. The DWT offers better spatial

resolution at high frequencies and better frequency resolution

at low frequencies which is well matched with the properties

of HVS [2].
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A. Number of decomposition levels

The number of decompositions determines the lowest level

resolution in wavelet domain and quality of the compressed

image. The decomposition level changes the proportion of

detail coefficients in the detail bands. Decomposing a signal

to a greater level provides extra detail coefficients of low

magnitude that can be thresholded in order to obtain higher

compression rates. The image quality is better for larger

number of decompositions as the important WT coefficients

are selected more successfully from less important coefficients.

However this leads to energy losses and at the same time

computational complexity also increases. Decomposing to

fewer levels, provides better energy retention but not as great

compression. Hence it is required to compromise between

computational complexity and quality. The experiments in this

paper use decomposition levels from 2 to 8 for each wavelet

filter and for different compression ratio.

B. Choosing the wavelet filters

The different wavelets are obtained by dilation and trans-

lated versions of a single mother wavelet function. Since large

numbers of wavelet filters are available, investigators often

have a difficulty in selecting an optimal wavelet for a specific

image processing application. The selection of the wavelet fil-

ter depends on the important properties like-compact support,

symmetry, orthogonality, regularity and degree of smoothness.

How well a wavelet can pack the signal energy in as few

coefficients as possible depends on the wavelet properties.

But it is difficult for a wavelet filter to have all properties

and has to sacrifice some property to satisfy the remaining

properties. This compromise makes the filters to belong to

the wavelet family of orthogonal, bi-orthogonal or symmetric.

In each family, wavelet filters of different order(N) can be

chosen. Generally the decomposition (Nd) and reconstruction

(Nr) filters will be of same order but biorthogonal wavelet can

have similar or different filter orders for decomposition and

reconstruction. The lower order filters with compact support

have good time localization and preserves high frequency

features like edges. The higher order filters leads to higher

degree of smoothing because of their wider support.

In this paper, five type of wavelet families such as Haar,

Daubechies, Coiflet, Biorthogonal and Symmetric wavelets are

considered. The following set of wavelet filters are examined

: Haar wavelet (db-N) with N = 1; Daubechies wavelet (db-N)

with N = 2 , 3 , 5 , 6 , 7 ; Coiflet wavelet (coif-N) with N =

1 , 2 , 3 , 4 , 5 and Biorthogonal wavelet (bior-Nr.Nd) with

(Nr,Nd) = 2.2 , 3.3 , 4.4 , 5.5 , 6.8 and Symmetric wavelets

(sym-N) with N = 2 , 4 , 5 , 6 , 7.

III. IMAGE QUALITY EVALUATION

The quality of the reconstructed image can be evaluated ob-

jectively and subjectively. Objective measures such as PSNR,

LMSE, and SSIM are mathematically computable distortion

measures. The PSNR is given by (1).

PSNR = 10log
10

(2b
− 1)2

1

RC

∑R

i=1

∑C

j=1
[x(i, j) − y(i, j)]2

(1)

where x and y are the original and reconstructed image of size

RC and b is the number of bits used to represent an image

pixel. For retinal images used here, b is 8. The digital retinal

image consists of blood vessels structure. The changes in blood

vessel pattern helps in the early detection of a disease called

diabetic retinopathy (DR). The blood vessels have greater

contrast, lower intensity values and appear dark in the retinal

image. This variation in the intensity levels near the vessel

border can be captured by gradient based operators. In this

direction a 2-D discrete laplacian operator is used to detect

the blood vessels as it captures information relating to edge

features. Edge information is known to be an image property

to which the human visual system is highly sensitive [2].

Therefore laplacian based error measure is more suitable to

evaluate the quality of the retinal images. The two-dimensional

laplacian operator based edge detector expressed by (2), is

used to detect vessel structure in the retinal image [13]. Then

LMSE is defined as the MSE between the laplacian of the

original image and laplacian of the reconstructed image [14]

and computed using (3).

O((x(i, j)) = x(i + 1, j) + x(i − 1, j) +

x(i, j + 1) + x(i, j − 1) − 4x(i, j) (2)

LMSE =

∑R

i=1

∑C

j=1
[O(x(i, j)) − O(y(i, j))]2

∑R

i=1

∑C

j=1
[O(x(i, j))]2

(3)

Since the images are ultimately viewed by human observers, a

HVS based measure SSIM is also used to evaluate the quality

of the image [11]. The SSIM is an objective image quality

measure capable of reflecting perceptual qualities based on the

HVS. It incorporates HVS in the form of three components-

luminance, contrast and structural comparison between the

original and reconstructed images and is computed as in (4).

SSIM(x, y) =
(2µxµy + C1)(2σxy + C2)

(µ2
x + µ2

y + C1)(σ2
x + σ2

y + C2)
(4)

where µ and σ are the mean and variance of the respective

image. C1, C2 and C3 are small constants. For better image

quality assessment, the SSIM is applied locally. The statistics

within a local window are calculated. Then mean SSIM is

obtained to measure overall image quality.

Any image compression method must ensure that there is no

significant loss of diagnostic information for visual examina-

tion as well as subsequent medical image analysis. Hence in

addition to objective measures, the perception and diagnostic

based subjective evaluation quantified by the mean opinion

score (MOS) is also considered [15]. The MOS values are

obtained from two medical experts and six students working in

different areas of signal processing. The MOS is obtained not

only by overall grading but also giving scores by comparing

the various diagnostic features such as optic disk, macula,

blood vessel structure and pathological features between the

original and compressed images.
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TABLE I

MEAN OPINION SCORE (MOS): MOS AND ITS DESCRIPTION WITH RESPECT TO DIAGNOSIS

Rating Image quality Level of Distortion Effect of distortion on Diagnostic features Diagnosis

5 Very Good Imperceptible All diagnostic features are preserved Correct

4 Good Perceptible but not annoying Most of the significant features are preserved Meaningful

3 Fair Slightly annoying some of the features are distorted Satisfactory

2 Poor Annoying Most of the diagnostic features are distorted Poor

1 Bad Very annoying All diagnostic features are distorted Not possible

The subjective test is conducted by displaying a pair of images

on the screen. The first image is always the original image

without compression. The second image is the reconstructed

version of the original which possess some difference with

respect to original. The assessor is asked to give the score

for the second image taking the first image as reference.

The viewers are allowed to assess without any constraint on

viewing distance, time and lighting conditions. The 5 level

scoring with description is given in Table I. The goal here is,

to observe the performance of a given wavelet filter at different

decomposition levels. The evaluation is done across all images

and at a given CR. Then the whole process is repeated for other

values of CR.

IV. RESULTS AND DISCUSSION

A very popular and publicly available wavelet based com-

pression method SPIHT[10]is used for compressing the digital

retinal images. This compression method exploits the inherent

similarities across sub-bands in a wavelet decomposition of an

image. The merits of this algorithm are good image quality,

high PSNR, optimized for progressive image transmission

and fast coding and decoding. The various wavelet filters

are applied on 10 retinal images (01
−
test to 05

−
test and

36
−
training to 40

−
training) randomly selected from test and

training set of DRIVE (Digital Retinal Images for Vessel

Extraction) database [11]. The green plane image is extracted

from original color image and resized to 256 x 256. The

compression ratio is varied from 2 to 10. The image is decom-

posed to levels 2 to 8.The experimental results are obtained by

decomposing an image to all levels using a given wavelet filter

and for different compression ratio. The quality of resulting

image is quantitatively tested by computing the PSNR, LMSE

and SSIM. The qualitative MOS is obtained from subjects for

each of the reconstructed images. Similarly the observation

is made for whole set of filters. It is observed that for some

images with CR beyond 8,the diagnosis falls below satisfactory

range and therefore not useful in the performance analysis. But

still to have the full range of MOS and diagnosis, the results

for CR=10 are also recorded.

A. Selection of optimum decomposition level

Decomposing the image to fewer levels means better energy

retention and better image quality but not as great compres-

sion. Decomposing to higher levels provides better compres-

sion but more energy loss and degraded image quality. The

experiments in this work show that the best trade-off between

energy loss, compression and image quality is provided by

decomposing to a level of 5 or 6. The results required for

selecting the optimum decomposition level for a given wavelet

filter for all ten images across all compression ratios are

shown from Table II. The optimum decomposition level can

be determined by plotting the PSNR against decomposition

levels at different compression rates as shown in Fig.1(a). After

some point of decomposition level, the PSNR tends to saturate

and that level is taken as the optimum decomposition level.

Similarly Fig.1(b) shows the LMSE variation with decompo-

sition levels. The LMSE decreases from a higher value from

initial decomposition levels to a much lower value at later

levels upto an optimum decomposition level and thereafter

the variation is very little. Fig.1(c) gives the SSIM values

at different decomposition levels. The SSIM value increases

initially upto an optimum decomposition level and remain

almost the same for further decomposition levels. For the case

of retinal image compression considered in this paper, the level

5 is taken as optimum decomposition level.

B. Selection of best suited filter

A best wavelet filter is chosen by considering the effect

of all wavelet filters on the quality of a set of 10 images at

the optimum decomposition level and at various compression

rates. The comparison results of objective quality measures-

the PSNR, LMSE and SSIM averaged over 10 images for

each wavelet filter are recorded in TableIII. It is noted from

the results presented in Table III that among all wavelet

filters considered, the filter bior6.8 performs better by having

maximum PSNR, minimum LMSE and best SSIM value at

different CR. It is also possible to find out the better filter

from a particular family of filters using the same criterion.

Fig.2 shows the 2 level decomposition of the preprocessed

original image 04
−
test. In this result, the best suited wavelet

filter bior 6.8 is used.

V. CONCLUSION

The wavelet compression of digital retinal image using

SPIHT is performed using various wavelet filters. The per-

ceptual effect of different wavelet filters, filter orders, decom-

position levels at different CR is examined. The performance

comparison of wavelet filters is done on the basis of objec-

tive quality parameters- the PSNR, LMSE and SSIM. These

measures help in selecting the optimum decomposition level

which is chosen as 5 and bior6.8 as the best suited filter for

retinal image compression. We also focused on the experts’

assessment of diagnostically acceptable quality of compressed

retinal images to ensure sufficient accuracy. The results of this
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TABLE II

AVERAGE VALUES OF PSNR, LMSE AND SSIM AT ALL DECOMPOSITION LEVELS FOR WAVELET FILTER DB5.

CR=2 CR=4 CR=6 CR=8 CR=10

Level PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM

2 45.5812 74.5942 0.9631 29.9154 377.3251 0.64104 24.2738 438.2921 0.5338 21.2931 452.2332 0.4897 17.6754 512.6224 0.3282

3 54.1145 5.2589 0.9973 43.3901 58.4485 0.9692 39.7813 114.8377 0.9363 37.0941 176.7749 0.9006 34.6207 259.0209 0.8600

4 56.7421 3.0959 0.9984 45.8521 37.0479 0.9812 42.4427 70.8622 0.9621 40.7597 98.1077 0.9456 39.3950 121.4702 0.9316

5 57.4016 2.6391 0.9986 46.4079 32.4026 0.9835 42.9953 63.0446 0.9663 41.3057 89.7835 0.9511 40.1537 106.9521 0.9396

6 57.5395 2.5547 0.9987 46.5270 31.4340 0.9839 43.1054 61.5864 0.9671 41.4197 87.8071 0.9522 40.2900 104.5200 0.9412

7 57.5627 2.5408 0.9987 46.5472 31.2559 0.9840 43.1239 61.3252 0.9672 41.4386 87.4348 0.9524 40.3135 104.2126 0.9414

8 57.5659 2.5888 0.9987 46.5499 31.2302 0.9840 43.1268 61.2898 0.967 41.4416 87.3918 0.9524 40.3170 104.1776 0.9415
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Fig. 1. Average values of PSNR (a), LMSE (b) and SSIM (c) at different decomposition levels for CR = 2, 4, 6, 8, 10 and Wavelet filter used is db5.
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Fig. 2. (a) Original image (512x512) (b) 2-level decomposition of the image

study showed that there is relatively good agreement among

medical experts and student observers in their capacity to

perceive diagnostic distortion due to compression. The results

also gave an idea of how much compression is tolerable before

the diagnostic quality of an image has been compromised

(the MOS below satisfactory level). This study indicates that

high compression ratios are not acceptable in the diagnostic

sense and also that the tolerance for compression varies across

images.
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TABLE III

AVERAGE VALUES OF PSNR, LMSE AND SSIM AT OPTIMUM DECOMPOSITION LEVEL.

Wavelet CR=2 CR=4 CR=6 CR=8 CR=10

PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM PSNR LMSE SSIM

bior2.2 56.810 3.233 0.998 46.149 36.491 0.983 43.030 65.974 0.967 41.306 94.210 0.953 40.245 109.509 0.943

bior3.3 54.067 6.208 0.997 44.412 54.035 0.976 41.674 85.917 0.958 40.089 112.634 0.944 38.891 135.523 0.932

bior4.4 57.626 2.345 0.999 46.660 28.822 0.985 43.287 56.622 0.969 41.591 82.305 0.954 40.487 98.782 0.944

bior5.5 56.782 2.252 0.998 46.011 27.249 0.983 42.430 55.080 0.963 40.992 79.151 0.949 39.869 95.420 0.937

bior6.8 57.675 2.503 0.999 46.675 30.760 0.984 43.324 59.448 0.969 41.611 85.415 0.954 40.494 101.910 0.944

coif1 57.407 2.618 0.999 46.496 31.528 0.984 43.108 62.218 0.967 41.402 89.255 0.952 40.262 107.073 0.941

coif2 57.558 2.546 0.999 46.620 30.658 0.984 43.216 60.355 0.968 41.525 86.435 0.953 40.401 103.284 0.943

coif3 57.527 2.571 0.999 46.541 31.309 0.984 43.145 60.970 0.967 41.471 86.878 0.952 40.341 103.567 0.942

coif4 57.465 2.613 0.999 46.452 32.238 0.984 43.056 62.591 0.967 41.378 88.865 0.952 40.241 105.802 0.940

coif5 57.395 2.653 0.999 46.400 32.521 0.983 42.987 63.198 0.966 41.312 89.976 0.951 40.151 106.876 0.940

db1 56.067 3.569 0.998 46.199 33.543 0.982 42.738 67.729 0.964 41.015 96.059 0.947 39.723 119.450 0.935

db2 57.326 2.658 0.999 46.433 32.007 0.983 43.022 63.170 0.966 41.316 90.063 0.951 40.164 107.981 0.940

db3 57.446 2.608 0.999 46.520 31.541 0.984 43.113 61.610 0.967 41.425 88.149 0.952 40.287 105.493 0.941

db5 57.402 2.639 0.999 46.408 32.403 0.984 42.995 63.045 0.966 41.306 89.784 0.951 40.154 106.952 0.940

db6 57.355 2.680 0.999 46.315 32.953 0.983 42.903 64.145 0.966 41.223 91.636 0.950 40.059 109.074 0.938

db7 57.302 2.718 0.999 46.307 33.289 0.983 42.854 64.907 0.965 41.174 92.495 0.950 39.983 110.418 0.937

sym2 57.326 2.658 0.999 46.433 32.007 0.983 43.022 63.170 0.966 41.316 90.063 0.951 40.164 107.981 0.940

sym4 57.553 2.546 0.999 46.606 30.803 0.984 43.179 60.990 0.967 41.483 87.016 0.953 40.354 104.173 0.942

sym5 57.630 2.502 0.999 46.627 30.308 0.985 43.230 60.145 0.968 41.540 86.106 0.953 40.414 103.087 0.942

sym6 57.591 2.528 0.999 46.594 30.959 0.984 43.177 60.974 0.967 41.495 86.744 0.953 40.368 103.592 0.942

sym7 57.512 2.569 0.999 46.525 31.554 0.984 43.108 61.452 0.967 41.449 87.062 0.952 40.314 104.322 0.941
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