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Abstract—TCP is the most common transport layer protocol 

used in Internet. It was designed primarily for wired networks, 

assuming reliability at lower layers and packet losses are 

considered as an indication of congestion. The characteristic of 

wireless links is very different from wired links, particularly in 

terms of loss behavior. In wireless networks, most packet losses 

are due to poor link quality and intermittent connectivity, 

which TCP may falsely assume as congestion. These wrongly 

trigger the congestion control mechanism of TCP, resulting 

into end-to-end throughput degradation. The problem is 

further compounded by the large propagation delay common 

in such environments. TCP-ACC proposed earlier attempts to 

combat this problem by adopting a dynamic value of 

congestion window for the slow start. In this paper, we extend 

TCP-ACC with the help of a cross layer solution to 

differentiate between a loss due to congestion and a loss due to 

noise in the wireless link based on the number of attempts of 

MAC layer retransmissions.

Keywords-slow start, congestion control, retry limit, retry 

count, RTT, duplicate acknowledgment, cwnd, ssthresh. 

I. INTRODUCTION 

TCP interpret packet loss as an indication of network 
congestion [RFC2581]. As a policy, TCP reduces its 
transmission rate to reduce the network congestion as a 
correcting action against packet loss. This policy 
dramatically reduces TCP performance over wireless links. 
This is mainly due to the unpredictable characteristics of a 
wireless network with (a) High Bit Error Rate and (b) higher 
delay.

In wireless links value of RTT is very high and highly 
varying because of changing network and link conditions.  
As a result during a TCP connection, it usually takes more 
time to come out of the slow start phase. This will restrict 
TCP to utilize maximum of the available bandwidth, which 
in turns, pull down the throughput [3]. A scheme referred as 
FastTCP was proposed to address the issue,          [ RFC2414]

particularly for the wireless networks. However the Fast  
TCP has the following drawbacks; (a) It assumes some static 
value (other than 1) for cwnd in the beginning of a new TCP 
connection. However considering the unpredictable 
characteristic of the wireless networks the same value may 
not suite best to all network conditions. (b) The Fast TCP 
scheme attempts slow start phase with higher value of cwnd
only in the beginning of a new TCP connection, however it is 
not using the same strategy for the other slow start phases 
then after. 

In conventional cellular wireless networks, non-
negligible random wireless channel error rates also contribute 
to losses [2][8]. In wireless networks, in addition to congestion 
and wireless errors, mobility serve as another primary 
contributor to losses perceived by connections. By assuming 
network congestion as the cause of these errors, TCP does 
the wrong thing; it drastically reduces it’s transmit window 
and deploys the slow start algorithm. This results in 
underutilized network bandwidth as discussed above and 
applications experiencing increased network latency.[7] In the 
networks other than wired, usually the reasons of packet 
losses are other than congestion, leading to an inappropriate 
triggering of TCP congestion control algorithm; results into 
unnecessary reduction in throughput and, hence the 
performance degradation. 

The proposed scheme by the author attempts to assign 
dynamic value to the cwnd , for all of the slow start phases 
during the entire TCP connection. At the same time it also 
uses feedback from MAC layer to inform TCP about link 
failure. This will prevent TCP to trigger congestion control 
algorithm inappropriately.  also reduced to certain extent. 

II. RELATED WORK

Because of its inability to distinguish between packet 
losses due to congestion and due to transmission errors, TCP 
performs poorly on wireless links. Maximum throughput 
conceived by the TCP connection, when the TCP congestion 
window is equal to the Bandwidth Delay product of the 
channel, at which the maximum capacity of the channel is 
utilized [5] Several interesting approaches have already been 
proposed to improve TCP performance over wireless 
networks.[5][6]9][10][11] However, many of these schemes 
require TCP-specific actions on the part of intermediate 
nodes on the path from TCP sender to TCP receiver. Such 
schemes are sometimes referred as being TCP-aware [8]. 

In the split connection approach, a TCP connection is 
broken into two TCP connections – one from the sender to 
the base station, another from the base station to the receiver 

[11]. Thus, wireless errors can be handled locally, by means of 
retransmissions from the base station. This approach, 
however, violates the end to end reliability semantics of TCP. 

The proposal described in [12] employs TCP Westwood. It 
lies on bandwidth estimate at the sender side and is based on 
the received sequences of acknowledgements. The estimate 
is realized in order to improve the TCP congestion control 
mechanism and to minimize the effect of packet losses due to 
the wireless context. The proposal describes in [5] improves 
the bandwidth estimate at the TCP layer, particularly the 



performance is effected by the random losses. The TCP 
jersey version described in [6] has been specifically developed 
to detect TCP congestions in a wireless network and to react 
consequently. Two mechanisms are thus installed: an 
estimate of the available bandwidth allowing the sender to 
adjust its flow throughput in the case of congestion, and a 
congestion warning carried out by intermediate nodes and 
based on marking of packets towards the sender. 

All these solutions are proposed in the general context of 
wireless networks and do not take into accounts the MAC 
layer specificities and the interactions with it. These 
mechanisms are thus not optimized for 802.11 wireless 
networks where a first level of error recovery carried out at 
the MAC layer.  

III. ADAPTIVE CONGESTION CONTROL

Considering merits of TCP NewReno over other TCP 
flavors, namely Tahoe, Reno and SACK [1], it is adopted as a 
base TCP protocol for modifications. In general SACK TCP 
needs one RTT to recover all losses in a single transmission 
window, where as NewReno TCP requires L*RTT to finish, 
where L is the number of lost segments. NewReno TCP 
however, overcomes multiple segment loss without any 
overhead, and it can support existing receiver side equipment 
without any modifications [4]. However, few weaknesses of to 
TCP NewReno, while implemented over wireless links, are 
highlighted as follows. 

• TCP NewReno uses slow start mechanism when data 
transfer is initiated; same as TCP [ RFC2582]. If network 
links are slow, it takes long time to grow congestion 
window & hence results into an excessive delay, 
while probing network capacity. In this phase 
throughput will be degraded due to relatively less 
transmission rate [9].

• TCP New Reno modifies cwnd = cwnd/2 after 
successfully recovering from last fast retransmit 
phase [RFC2001]. Which unnecessarily slowdowns the 
transmission rate of sender by 2. Some estimation 
based on ACK filtering [12] or analysis of ssthresh
variable during previous data transfer interval may 
be useful in tuning transmission rate of sender more 
appropriately particularly in case of packet losses 
due to reasons other than congestion. 

• TCP New Reno does not have the capability to 
distinguish and to isolate congestion loss from 
wireless loss. Under these circumstances, it reacts to 
wireless loss with drastic reduction of the sender 
transmission rate, whereas the best strategy would be 
to increase or maintain the retransmission rate [8]. In 
erroneous channel it is obvious that discovering the 
loss and quick retransmission is desirable. However 
with disconnection quick retransmissions are not 
useful until the link is re-established, as it is 
guaranteed to be a waste of network bandwidth [4][8].

A. Algorithm 

To overcome the first two weaknesses of TCP NewReno, 
an adaptive congestion control algorithm is developed. This 
proposed algorithm modifies TCP NewReno congestion 
control, with more emphasis on its performance 
improvement over wireless links; ensuring its rated 
performance over wired links. The following session 

summarize the logic behind development of TCP– Adaptive 
Congestion Control (referred as TCP ACC in rest of the 
paper). 

During slow start phase of a new TCP connection, TCP 
limits its capacity by sending one packet per RTT, assuming 
that the sender is unaware of network condition and hence it 
starts with a very basic value .This is done by setting it's 
cwnd to one [1]. For higher value of RTT, this results into an 
excessive delay, in slow start phase. 

Consider a TCP sender, having multiple TCP connections 
over a point to point wireless link. All TCP connections 
using the common interface are going to suffer from similar 
kind of environment. Under these circumstances the link 
estimation based on ongoing connection can be used as 
reference for new connection to provide approximate idea of 
the network. As ssthresh level gives partial approximation of 
link behavior [1][3], we take ssthresh to calculate value of 
parameter reflecting approximation of link. All TCP 
connections are going to update one global variable nvar0,
which basically reflects link condition. Whenever any 
ongoing connection detects a packet loss on the network, its 
ssthresh value is used to recalculate nvar0. Whenever a new 
connection is established, instead of starting from cwnd = 1,
we start using cwnd = nvar0.  This will allow higher value of 
nvar0, under better link conditions, whereas for poor link 
conditions nvar0 is set to its minimum value 1.  This will not 
only reduce tslowstart time, but also facilitate initialization of 
cwnd dynamically. Reflections of link characteristics, from 
peer TCP connections will also improvise stability during 
slow start phase by not allowing higher value for cwnd in the 
beginning; particularly under poor link conditions. The basic 
coding can be understood as shown below. 

Figure 1. Modifications in slow start phase of TCP NewReno

Wireless links frequently suffer from link disconnection 

[2]. It is reflected by timeout in NewReno TCP. Simulation 
results of first modification shows that modified NewReno 
TCP behaves in a same way as original NewReno TCP after 
timeout, and no advantage of modification is gained. 
Timeout causes significant fall in throughput as TCP reduces 
its rate to one packet per RTT. As in wireless links cause of 
timeout is mostly link disconnection not congestion [7][8] and 
as value of RTT is much higher, TCP unnecessarily wastes its 
time in probing network after timeout. It may also happen 
that link will be down again within some time after link is up. 
That is why we need to pump more data as soon as link is up 

[8].

With all above considerations we again modify the source 
code of NewReno TCP to achieve advantages of modified 
slow start even after of timeout. When timeout occurs the 

Global variable nvar0  

Modifynvar0 IN SLOWDOWN( ) 

      if (loss is reported) then 

            nvar0= int ((0.4*ssthresh_) + (0.6*nvar0)); 

Implementation IN SETWNDINIT ( ) 

/* modification is variable to indicate modified new 

Reno */ 

 if(new TCP connection establishes and modification 

= 1) then 

       cwnd = nvar0 

else         cwnd = 1;



cwnd is initialized with nvar0/2, instead of wnd_restart. Rest 
of implementation in modified New Reno is taken as it is. 
The basic coding can be understood as shown below. 

Figure 2. Modifications in timeout phase of  TCP NewReno

B. Related Work 

The complete TCP NewReno with suggested 
modifications is referred as TCP-ACC in rest of the paper. 
The performance of TCP ACC is compared with TCP 
NewReno using NS2 based simulations over different 
network scenarios. The performance comparison on the 
simple wireless link is as shown below. The figure3 
represents the network scenario with all relevant parameters. 
The figure 4 represents the cwnd vs. time plot for TCP-ACC 
connection over the simulated network. Analysis showing 
performance comparison is summarized in table 1. 

Figure 3. Network Topology for Simulation

Figure 4. cwnd vs Time for TCP NewReno and TCPACC

The congestion control policy of TCP ACC allows TCP 
to conceive more throughput in presence of interference as 
mentioned below in table. That demonstrates the strength of 
the suggested algorithm. The interference introduced during 
simulation will lead to network congestion and resulted into 
packet loss.  However if the packet losses are due to the 
reason other than congestion, inability of this algorithm to 
differentiate between type of packet loss is surfaced out. This 
was evaluated by introducing losses at link layer, during 
simulations in NS2. This demands presence of some Loss 
Differentiation algorithm at TCP. 

TABLE I. THROUGHPUT  COMPARISON

Interference 

Packets/sec 

Throughput 

NewReno TCP ACC 
Improvement 

in % 

0 254.418 263.689 3.52

200 254.418 263.689 3.52 

700 241.312 245.679 1.78 

1500 239.187 244.261 2.08 

3000 229.067 235.376 2.68 
 Measured in Kilobits / second at receiver end. 

TABLE II. THROUGHPUT  COMPARISON

MAC

BER in % 

Throughput 

NewReno TCP ACC 

Impact on 

throughput in 

%

0 254.418 263.689 3.52

0.05 216.504 213.992 -1.17

0.07 197.757 197.319 -0.22

0.1 155.453 168.948 7.99
 Measured in Kilobits / second at receiver end.

The readers can refer to the reference [10] for better 
understanding and the evaluation of the TCP-ACC using  
NS-2 simulations. 

IV. A CROSS  LAYER  ADAPTIVE  POLICY

A retransmission at the MAC layer occurs, when the 
802.11 acknowledgement is not received by the transmitter 
within the specified delay, is indicated in the frame through 
the retry bit of the MAC header. For each retransmission a 
counter is incremented until a threshold, named retry limit, is 
reached. This is the basic loss differentiation Algorithm [2][11]

used at the MAC layer of the proposed scheme. The idea is to 
count the number of MAC retransmissions for each of the n
segments composing the current TCP window.  When the 
TCP layer is alerted by the reception of three duplicated 
acknowledgments, the above count will be very useful. For 
one of these not acknowledged segments, if the number of 
MAC retransmissions (Retry Count) is equal to the threshold 
(Retry Limit), we consider that the loss is due to 
interferences and not due to network congestion..  This 
information is made available to TCP-ACC for triggering its 
congestion control algorithm appropriately as described 
below. 

A. Algorithm 

When the source detects a segment loss, i.e. when 3 
duplicate acknowledgments are received, the Loss 

Timeout MODIFICATIONS FOR SLOWDOWN( ) 

/* 

wnd_restart_ is a variable used to initialize cwnd 

after timeout. 

*/ 

 if (timeout is detected and modification = 1) then 

        wnd_restart_= nvar0/2; 

        cwnd = int(wnd_restart_); 

All wireless links 10 Mbps, 10 ms 

Node_0 Node_2

Node_1

Traffic Pattern 
1) TCP connection  between node_0 & node_1 

a) ftp0   from  7 sec  to 15 sec 

b) ftp1 from  20 sec to 25 sec 

c) ftp2 from 30 sec to 36 sec 

              Total simulation time 40 seconds. 

2) TCP connection between node_0 & node_2 

ftp during entire simulation duration

_______
TCP NewReno

________
 TCPACC 

ftp starts with higher value of cwnd



Differentiation Algorithm is asked to know the cause of the 
packet loss. 

• If the loss is classified as due to congestion, a normal 
TCP-ACC reaction is triggered. 

• If the loss is classified as due to interferences (short 
signal loss), cwnd is not reduced. This allows the 
source to achieve higher transmission rates in the 
event of short successive signal losses, if compared 
to the blind reduction of the throughput performed 
by the legacy operations of TCP [2].

The basic coding can be understood as shown below. 

Figure 5. Flowchart for TCPCLAP 

Pseudo codes for the implementations. 

Figure 6. MAC Layer implementation of LDA

Figure 7. Transport Layer Implementation for TCPCLAP

Here n is the maximum seq. no. in a window at time of 
reception of 3 duplicate acks. For one of these segments, if 
number MAC Retransmissions (Retry Count) is equal to 
threshold (Retry Limit) we consider that loss is due to link 
failures and not to TCP congestion, as explained before. 

The next section describes the performance evaluation of 
the proposed scheme over a wireless network using a 
simulation in NS-2. 

V. SIMULATIONS AND RESULTS

In order to analyze the performance improvements 
brought by the TCP-CLAP, simulation is carried out using 
NS-2. The simulation is carried out over a network scenario 
as described in TCP-ACC for 100 sec of period. The 
NewReno at a Transport Layer and 802.11g at MAC layer 
are used as base protocols for all modifications. Initially the 
simulation is carried out for different interferences 
introduced in TCP connection during the simulation duration.  
The P1 traffic pattern is followed. (please refer to table IV ). 

Here Interference is generated by allowing CBR/UDP 
traffic on the same wireless (802.11g) channel between 
node_1 and node_2. Variations in the interference are 
achieved by changing the transmission rate of the CBR 
traffic. During the simulations the interference rate is varied 
from 200 packets/sec to 4000 packets/sec. Here interference 
rate is considered to be the key parameter. The following 
table summarizes the performance comparison between TCP 
NewReno and TCP CLAP, in terms of throughput.  

TABLE III. THROUGHPUT COMPARISON FOR INTERFERENCES

Interference 

Packets/sec 

Throughput* 

NewReno TCP CLAP 
Improvement 

in % 

0 254.418 263.689 3.52

200 254.418 263.689 3.52

500 243.182 244.261 0.44

3000 229.067 235.376 2.68
* Indicates throughput measured in Kilobits / second at receiver end

The above comparison clearly indicates the strength of 
TCP CLAP over TCP NewReno in the presence of 
interferences at TCP, which are responsible for causing 
network congestion, resulted into the packet loss. This 
demonstrates effectiveness of TCP ACC even in the presence 
of LDA. The performance of TCP CLAP in presence of link 
failures has been evaluated.  A BER variation at link layer is 
considered to be the key parameter. 

The simulation results shows that with the introduction of 
LDA scheme in TCP ACC, the performance is much 
improved. This is certainly due to the ability of TCP to 
differentiate between different types of losses as mentioned 
earlier and its appropriate triggering of congestion control 
algorithm based on the estimate from MAC layer. A 
performance comparison between various schemes is again 
carried out using simulations under NS2. The results of 
above comparisons are as tabulate below. 

TABLE IV. THROUGHPUT  COMPARISON FOR  BER 

MAC

BER 

Throughput* 

NewReno TCP CLAP 
Improvement 

in % 

0 254.418 263.689 3.52

0.05 216.504 241.312 10.28

0.07 197.757 214.85 7.96

0.1 155.453 196.34 20.82
* Indicates throughput measured in Kilobits / second at receiver end.

dupacks = 3 

For all the not acknowledged segments 

for ( i=0, i<= n, i++) 

Retry Count ++; 

Retry Count = Retry 

Limit

Loss_estimation =1 

(case of signal loss) 

Newreno reaction 

 is triggered for congestion.

dupacks ++; 

Yes 

Yes 

No

ack 

No

/* at MAC layer */ 

If (segment is retransmitted) 

\\ For each retransmission counter is incremented.  

Retry count ++; 

If (Retry Count = Retry Limit) 

/* In this case the segment loss is mainly due to link 

failure rather than congestion. */ 

        LDA_Estimator = 1; 

     end if 

end if 

/* at Transport Layer */ 

if (no. of duplicate acks = 3) 

for( i = 0; i < = n; i ++) 

if (LDA_Estimator = 1)  

/* Calculated at MAC Layer */ 

Flag = 1; 

/* Flag =1, prevents triggering of congestion control 

algorithm in TCP ACC */ 

                  end if; 

        end if; 

end if; 



Comparisons (as summarized in table III and IV) based 
on the simulation results, indicate performance improvement 
in TCP CLAP over TCP NewReno. It is also observed that 
the percentage increase in improvement is higher with higher 
value of BER and Interference Rate. This is the case mainly 
with wireless networks. At the same time it is also observed 
that the performance of TCP CLAP is not tainted while 
operated with lower value of BER or Interference in the 
network 

Performance of TCP CLAP with different traffic pattern 
is also evaluated, considering the busty traffic in wireless 
networks. For that a single TCP connection between two 
nodes over a wireless link is simulated. To observe impact of 
the traffic pattern on the efficiency of TCP CLAP, 3 ftp 
connections were simulated one after another for different 
time intervals, as shown in table V below. 

TABLE V. DIFFERENT TRAFFIC PATTERNS FOR SIMULATIONS

Duration in Sec  

Pattern 
ftp1 ftp2 ftp3 

P1 1-30 35- 65 70-100 

P2 1-10 15-45 50-100 

P3 1-50 55-85 90-100 

P4 1-70 75-85 90-100 

The comparison between TCP NewReno and TCP CLAP 
for different traffic pattern is shown in table below. The 
simulation results clearly expose the efficiency of TCP 
CLAP over TCP NewReno under changing traffic patterns in 
the network. 

TABLE VI. THROUGHPUT  COMPARISON 

BER P1  P2  

 TCP * 

NewReno 

TCP * 

CLAP 

TCP * 

NewReno 

TCP * 

CLAP 

0.01 249.433 250.729 254.418 263.689 

0.05 216.504 241.312 230.442 240.502 

0.1 197.757 214.85 201.851 221.754 

0.5 8.97 9.5 9.746 9.869 

BER P3  P4  

 TCP * 

NewReno 

TCP * 

CLAP 

TCP * 

NewReno 

TCP * 

CLAP 

0.01 243.428 247.714 254.418 263.689 

0.05 206. 439 221. 172 224.412 225. 022 

0.1 190. 572 204. 582 191. 516 198. 463 

0.5 6.999 7.721 7.023 7.721 
* Indicates throughput measured in Kilobits / second at receiver end

VI. CONCLUSIONS

The wireless links are suffering a lot mainly by link 
errors and large propagation delays. Both the factors cause 
decrease in the acceleration of TCP transmission rate and 
subsequently, in the overall link utilization. This paper 
illustrates performance optimization in TCP with the help of 
cross layer mechanism between TCP and MAC layer 
protocols. The algorithm differentiates between packet loss 
due to network congestion and the same due to error in the 
transmission link. Identification of the reason for the packet 
loss helps TCP to trigger its congestion control mechanism 

appropriately, which prevents transmission ceases and 
reduction in congestion window unnecessarily, in absence of 
congestion. Subsequently, an approach to make TCP 
congestion control more efficient using adaptive approach 
based on parallel connection is also evaluated. 

The modified TCP, referred as TCP CLAP, attempts to 
differentiate between network congestion and link failures 
during packet transmission and triggers TCP congestion 
Control whenever packet loss is because of network 
congestion. This in turn helps the TCP CLAP to avoid 
negative impact of reduced transmission rate in absence of 
congestion. However, the algorithm does not degrade 
performance of TCP in a congested network, since the 
modified TCP, referred as TCP ACC reverts back to the 
conventional congestion control, with an adaptive policy. 
Analysis of the results of simulations carried out indicates 
improvement in the overall performance of TCP CLAP in 
presence of the modifications.  Performance enhancement of 
the proposed scheme is higher in case of higher value of 
BER. With lower value of BER (Generally with wired 
network) no degradation in the TCP performance observed 
which reveal portability and reliability of the TCP CLAP on 
heterogeneous networks.  

 The proposed TCP CLAP outperforms TCP NewReno, 
in case of interference caused by the parallel traffic and even 
in case of traffic pattern variations. Considering all the 
abilities of TCP CLAP, it may be accepted for reliable data 
transfer using TCP, over wired as well as wireless networks.  

REFERENCES

[1] G.   K. Fall, and S. Floyd, “ Simulation – Based comparison of Tahoe, 
Reno and SACK TCP”, Computer Communications Review ACM-
SIGCOMM, Vol.26, No.3 , July 1996. 

[2] N. K. G. Samaraweera, “Non-Congestion Packet Loss Detection for 
TCP error recovery using wireless links”, IEE Proc. on 
Communications, Vol 146, No.4, Aug 1999, pp 222-230. 

[3] W. Stevens, “ TCP Slow Start, Congestion Avoidance , Fast 
Retransmit and Fast Recovery Algorithms”, January 1997, RFC 2001. 

[4] Motoharu Miyake and Hiroshi Inamura, “TCP Enhancement Using 
Rcovery of Lost Retransmissions for NewReno TCP”, IPSJ Digital 
Courier, Vol 1 , Sep. 2005. pp 370-381. 

[5] A Capone, L. Fratta, and F. Martignon, “ Bandwidth Estimation 
Schemes for TCP over Wireless Networks”, IEEE transactions on 
Mobile Computing, vol.3, no. 2, 2004. 

[6] K. Xu, Y.Tian, and N. Ansari, “ TCP-Jersey for Wireless IP 
Communications.”, IEEE Journal on Selected Areas in 
Communications, vol. 22, no. 4, May 2004. 

[7] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobilehosts,” in 
Proc. 15th International Conf. on Distributed Computing Systems 
(ICDCS), May 1995. 

[8] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz, 
“Acomparison of mechanisms for improving TCP performance over 
wireless links,” in ACM SIGCOMM, Stanford, CA, August 1996. 

[9] A. DeSimone, M. Chuah, and O. Yue, “Throughput performance of 
transport-layer protocols over wireless LANs,” in Proc. Globecom 
’93, December 1993. 

[10] Prof. Purvang Dalal, “Adaptive TCP: Enhancing Performance over 
Heterogeneous Networks”. ICOICT 2009, SCT College of 
Engineering, Trivandrum, Kerala, INDIA. February 2009. 

[11] N. Vaidya, M. Mehta, C. Perkins, and G. Montenegro.: “Delayed 
duplicate acknowledgements: A TCP-unaware approach to improve 
performance of TCP over wireless”. Technical Report, Computer 
Science Dept., Texas A&M University, February 1999. 

[12] S. Mascolo, M.Y. Sanadidi, C. Casetti and R. Wang, “ TCp 
Westwood: End to End Congestion Control for Wired/Wireless 
Networks”, Wireless Networks Journal, vol.8, pp. 467-479, 2002. 


