
TCP Cross Layer Adaptive Policy
Throughput Optimization over Wireless Links

Purvang D. Dalal (Author)

Electronics & Communication Department

Dharmsinh Desai University

Nadiad, Gujarat, INDIA.

pur_dalal@yahoo.com , ec@ddu.ac.in

K. S. Dasgupta (Author)

Director, SITTA

Space Application Center, ISRO

Ahmedabad, Gujarat, INDIA

ksd@sac.isro.gov.in

Abstract—TCP is the most common transport layer protocol

used in Internet. It was designed primarily for wired networks,

assuming reliability at lower layers and packet losses are

considered as an indication of congestion. The characteristic of

wireless links is very different from wired links, particularly in

terms of loss behavior. In wireless networks, most packet losses

are due to poor link quality and intermittent connectivity,

which TCP may falsely assume as congestion. These wrongly

trigger the congestion control mechanism of TCP, resulting

into end-to-end throughput degradation. The problem is

further compounded by the large propagation delay common

in such environments. TCP-ACC proposed earlier attempts to

combat this problem by adopting a dynamic value of

congestion window for the slow start. In this paper, we extend

TCP-ACC with the help of a cross layer solution to

differentiate between a loss due to congestion and a loss due to

noise in the wireless link based on the number of attempts of

MAC layer retransmissions.

Keywords-slow start, congestion control, retry limit, retry

count, RTT, duplicate acknowledgment, cwnd, ssthresh.

I. INTRODUCTION

TCP interpret packet loss as an indication of network
congestion [RFC2581]. As a policy, TCP reduces its
transmission rate to reduce the network congestion as a
correcting action against packet loss. This policy
dramatically reduces TCP performance over wireless links.
This is mainly due to the unpredictable characteristics of a
wireless network with (a) High Bit Error Rate and (b) higher
delay.

In wireless links value of RTT is very high and highly
varying because of changing network and link conditions.
As a result during a TCP connection, it usually takes more
time to come out of the slow start phase. This will restrict
TCP to utilize maximum of the available bandwidth, which
in turns, pull down the throughput [3]. A scheme referred as
FastTCP was proposed to address the issue, [RFC2414]

particularly for the wireless networks. However the Fast
TCP has the following drawbacks; (a) It assumes some static
value (other than 1) for cwnd in the beginning of a new TCP
connection. However considering the unpredictable
characteristic of the wireless networks the same value may
not suite best to all network conditions. (b) The Fast TCP
scheme attempts slow start phase with higher value of cwnd
only in the beginning of a new TCP connection, however it is
not using the same strategy for the other slow start phases
then after.

In conventional cellular wireless networks, non-
negligible random wireless channel error rates also contribute
to losses [2][8]. In wireless networks, in addition to congestion
and wireless errors, mobility serve as another primary
contributor to losses perceived by connections. By assuming
network congestion as the cause of these errors, TCP does
the wrong thing; it drastically reduces it’s transmit window
and deploys the slow start algorithm. This results in
underutilized network bandwidth as discussed above and
applications experiencing increased network latency.[7] In the
networks other than wired, usually the reasons of packet
losses are other than congestion, leading to an inappropriate
triggering of TCP congestion control algorithm; results into
unnecessary reduction in throughput and, hence the
performance degradation.

The proposed scheme by the author attempts to assign
dynamic value to the cwnd , for all of the slow start phases
during the entire TCP connection. At the same time it also
uses feedback from MAC layer to inform TCP about link
failure. This will prevent TCP to trigger congestion control
algorithm inappropriately. also reduced to certain extent.

II. RELATED WORK

Because of its inability to distinguish between packet
losses due to congestion and due to transmission errors, TCP
performs poorly on wireless links. Maximum throughput
conceived by the TCP connection, when the TCP congestion
window is equal to the Bandwidth Delay product of the
channel, at which the maximum capacity of the channel is
utilized [5] Several interesting approaches have already been
proposed to improve TCP performance over wireless
networks.[5][6]9][10][11] However, many of these schemes
require TCP-specific actions on the part of intermediate
nodes on the path from TCP sender to TCP receiver. Such
schemes are sometimes referred as being TCP-aware [8].

In the split connection approach, a TCP connection is
broken into two TCP connections – one from the sender to
the base station, another from the base station to the receiver

[11]. Thus, wireless errors can be handled locally, by means of
retransmissions from the base station. This approach,
however, violates the end to end reliability semantics of TCP.

The proposal described in [12] employs TCP Westwood. It
lies on bandwidth estimate at the sender side and is based on
the received sequences of acknowledgements. The estimate
is realized in order to improve the TCP congestion control
mechanism and to minimize the effect of packet losses due to
the wireless context. The proposal describes in [5] improves
the bandwidth estimate at the TCP layer, particularly the

performance is effected by the random losses. The TCP
jersey version described in [6] has been specifically developed
to detect TCP congestions in a wireless network and to react
consequently. Two mechanisms are thus installed: an
estimate of the available bandwidth allowing the sender to
adjust its flow throughput in the case of congestion, and a
congestion warning carried out by intermediate nodes and
based on marking of packets towards the sender.

All these solutions are proposed in the general context of
wireless networks and do not take into accounts the MAC
layer specificities and the interactions with it. These
mechanisms are thus not optimized for 802.11 wireless
networks where a first level of error recovery carried out at
the MAC layer.

III. ADAPTIVE CONGESTION CONTROL

Considering merits of TCP NewReno over other TCP
flavors, namely Tahoe, Reno and SACK [1], it is adopted as a
base TCP protocol for modifications. In general SACK TCP
needs one RTT to recover all losses in a single transmission
window, where as NewReno TCP requires L*RTT to finish,
where L is the number of lost segments. NewReno TCP
however, overcomes multiple segment loss without any
overhead, and it can support existing receiver side equipment
without any modifications [4]. However, few weaknesses of to
TCP NewReno, while implemented over wireless links, are
highlighted as follows.

• TCP NewReno uses slow start mechanism when data
transfer is initiated; same as TCP [RFC2582]. If network
links are slow, it takes long time to grow congestion
window & hence results into an excessive delay,
while probing network capacity. In this phase
throughput will be degraded due to relatively less
transmission rate [9].

• TCP New Reno modifies cwnd = cwnd/2 after
successfully recovering from last fast retransmit
phase [RFC2001]. Which unnecessarily slowdowns the
transmission rate of sender by 2. Some estimation
based on ACK filtering [12] or analysis of ssthresh
variable during previous data transfer interval may
be useful in tuning transmission rate of sender more
appropriately particularly in case of packet losses
due to reasons other than congestion.

• TCP New Reno does not have the capability to
distinguish and to isolate congestion loss from
wireless loss. Under these circumstances, it reacts to
wireless loss with drastic reduction of the sender
transmission rate, whereas the best strategy would be
to increase or maintain the retransmission rate [8]. In
erroneous channel it is obvious that discovering the
loss and quick retransmission is desirable. However
with disconnection quick retransmissions are not
useful until the link is re-established, as it is
guaranteed to be a waste of network bandwidth [4][8].

A. Algorithm

To overcome the first two weaknesses of TCP NewReno,
an adaptive congestion control algorithm is developed. This
proposed algorithm modifies TCP NewReno congestion
control, with more emphasis on its performance
improvement over wireless links; ensuring its rated
performance over wired links. The following session

summarize the logic behind development of TCP– Adaptive
Congestion Control (referred as TCP ACC in rest of the
paper).

During slow start phase of a new TCP connection, TCP
limits its capacity by sending one packet per RTT, assuming
that the sender is unaware of network condition and hence it
starts with a very basic value .This is done by setting it's
cwnd to one [1]. For higher value of RTT, this results into an
excessive delay, in slow start phase.

Consider a TCP sender, having multiple TCP connections
over a point to point wireless link. All TCP connections
using the common interface are going to suffer from similar
kind of environment. Under these circumstances the link
estimation based on ongoing connection can be used as
reference for new connection to provide approximate idea of
the network. As ssthresh level gives partial approximation of
link behavior [1][3], we take ssthresh to calculate value of
parameter reflecting approximation of link. All TCP
connections are going to update one global variable nvar0,
which basically reflects link condition. Whenever any
ongoing connection detects a packet loss on the network, its
ssthresh value is used to recalculate nvar0. Whenever a new
connection is established, instead of starting from cwnd = 1,
we start using cwnd = nvar0. This will allow higher value of
nvar0, under better link conditions, whereas for poor link
conditions nvar0 is set to its minimum value 1. This will not
only reduce tslowstart time, but also facilitate initialization of
cwnd dynamically. Reflections of link characteristics, from
peer TCP connections will also improvise stability during
slow start phase by not allowing higher value for cwnd in the
beginning; particularly under poor link conditions. The basic
coding can be understood as shown below.

Figure 1. Modifications in slow start phase of TCP NewReno

Wireless links frequently suffer from link disconnection

[2]. It is reflected by timeout in NewReno TCP. Simulation
results of first modification shows that modified NewReno
TCP behaves in a same way as original NewReno TCP after
timeout, and no advantage of modification is gained.
Timeout causes significant fall in throughput as TCP reduces
its rate to one packet per RTT. As in wireless links cause of
timeout is mostly link disconnection not congestion [7][8] and
as value of RTT is much higher, TCP unnecessarily wastes its
time in probing network after timeout. It may also happen
that link will be down again within some time after link is up.
That is why we need to pump more data as soon as link is up

[8].

With all above considerations we again modify the source
code of NewReno TCP to achieve advantages of modified
slow start even after of timeout. When timeout occurs the

Global variable nvar0

Modifynvar0 IN SLOWDOWN()

 if (loss is reported) then

 nvar0= int ((0.4*ssthresh_) + (0.6*nvar0));

Implementation IN SETWNDINIT ()

/* modification is variable to indicate modified new

Reno */

 if(new TCP connection establishes and modification

= 1) then

 cwnd = nvar0

else cwnd = 1;

cwnd is initialized with nvar0/2, instead of wnd_restart. Rest
of implementation in modified New Reno is taken as it is.
The basic coding can be understood as shown below.

Figure 2. Modifications in timeout phase of TCP NewReno

B. Related Work

The complete TCP NewReno with suggested
modifications is referred as TCP-ACC in rest of the paper.
The performance of TCP ACC is compared with TCP
NewReno using NS2 based simulations over different
network scenarios. The performance comparison on the
simple wireless link is as shown below. The figure3
represents the network scenario with all relevant parameters.
The figure 4 represents the cwnd vs. time plot for TCP-ACC
connection over the simulated network. Analysis showing
performance comparison is summarized in table 1.

Figure 3. Network Topology for Simulation

Figure 4. cwnd vs Time for TCP NewReno and TCPACC

The congestion control policy of TCP ACC allows TCP
to conceive more throughput in presence of interference as
mentioned below in table. That demonstrates the strength of
the suggested algorithm. The interference introduced during
simulation will lead to network congestion and resulted into
packet loss. However if the packet losses are due to the
reason other than congestion, inability of this algorithm to
differentiate between type of packet loss is surfaced out. This
was evaluated by introducing losses at link layer, during
simulations in NS2. This demands presence of some Loss
Differentiation algorithm at TCP.

TABLE I. THROUGHPUT COMPARISON

Interference

Packets/sec

Throughput

NewReno TCP ACC
Improvement

in %

0 254.418 263.689 3.52

200 254.418 263.689 3.52

700 241.312 245.679 1.78

1500 239.187 244.261 2.08

3000 229.067 235.376 2.68
 Measured in Kilobits / second at receiver end.

TABLE II. THROUGHPUT COMPARISON

MAC

BER in %

Throughput

NewReno TCP ACC

Impact on

throughput in

%

0 254.418 263.689 3.52

0.05 216.504 213.992 -1.17

0.07 197.757 197.319 -0.22

0.1 155.453 168.948 7.99
 Measured in Kilobits / second at receiver end.

The readers can refer to the reference [10] for better
understanding and the evaluation of the TCP-ACC using
NS-2 simulations.

IV. A CROSS LAYER ADAPTIVE POLICY

A retransmission at the MAC layer occurs, when the
802.11 acknowledgement is not received by the transmitter
within the specified delay, is indicated in the frame through
the retry bit of the MAC header. For each retransmission a
counter is incremented until a threshold, named retry limit, is
reached. This is the basic loss differentiation Algorithm [2][11]

used at the MAC layer of the proposed scheme. The idea is to
count the number of MAC retransmissions for each of the n
segments composing the current TCP window. When the
TCP layer is alerted by the reception of three duplicated
acknowledgments, the above count will be very useful. For
one of these not acknowledged segments, if the number of
MAC retransmissions (Retry Count) is equal to the threshold
(Retry Limit), we consider that the loss is due to
interferences and not due to network congestion.. This
information is made available to TCP-ACC for triggering its
congestion control algorithm appropriately as described
below.

A. Algorithm

When the source detects a segment loss, i.e. when 3
duplicate acknowledgments are received, the Loss

Timeout MODIFICATIONS FOR SLOWDOWN()

/*

wnd_restart_ is a variable used to initialize cwnd

after timeout.

*/

 if (timeout is detected and modification = 1) then

 wnd_restart_= nvar0/2;

 cwnd = int(wnd_restart_);

All wireless links 10 Mbps, 10 ms

Node_0 Node_2

Node_1

Traffic Pattern
1) TCP connection between node_0 & node_1

a) ftp0 from 7 sec to 15 sec

b) ftp1 from 20 sec to 25 sec

c) ftp2 from 30 sec to 36 sec

 Total simulation time 40 seconds.

2) TCP connection between node_0 & node_2

ftp during entire simulation duration

TCP NewReno

 TCPACC

ftp starts with higher value of cwnd

Differentiation Algorithm is asked to know the cause of the
packet loss.

• If the loss is classified as due to congestion, a normal
TCP-ACC reaction is triggered.

• If the loss is classified as due to interferences (short
signal loss), cwnd is not reduced. This allows the
source to achieve higher transmission rates in the
event of short successive signal losses, if compared
to the blind reduction of the throughput performed
by the legacy operations of TCP [2].

The basic coding can be understood as shown below.

Figure 5. Flowchart for TCPCLAP

Pseudo codes for the implementations.

Figure 6. MAC Layer implementation of LDA

Figure 7. Transport Layer Implementation for TCPCLAP

Here n is the maximum seq. no. in a window at time of
reception of 3 duplicate acks. For one of these segments, if
number MAC Retransmissions (Retry Count) is equal to
threshold (Retry Limit) we consider that loss is due to link
failures and not to TCP congestion, as explained before.

The next section describes the performance evaluation of
the proposed scheme over a wireless network using a
simulation in NS-2.

V. SIMULATIONS AND RESULTS

In order to analyze the performance improvements
brought by the TCP-CLAP, simulation is carried out using
NS-2. The simulation is carried out over a network scenario
as described in TCP-ACC for 100 sec of period. The
NewReno at a Transport Layer and 802.11g at MAC layer
are used as base protocols for all modifications. Initially the
simulation is carried out for different interferences
introduced in TCP connection during the simulation duration.
The P1 traffic pattern is followed. (please refer to table IV).

Here Interference is generated by allowing CBR/UDP
traffic on the same wireless (802.11g) channel between
node_1 and node_2. Variations in the interference are
achieved by changing the transmission rate of the CBR
traffic. During the simulations the interference rate is varied
from 200 packets/sec to 4000 packets/sec. Here interference
rate is considered to be the key parameter. The following
table summarizes the performance comparison between TCP
NewReno and TCP CLAP, in terms of throughput.

TABLE III. THROUGHPUT COMPARISON FOR INTERFERENCES

Interference

Packets/sec

Throughput*

NewReno TCP CLAP
Improvement

in %

0 254.418 263.689 3.52

200 254.418 263.689 3.52

500 243.182 244.261 0.44

3000 229.067 235.376 2.68
* Indicates throughput measured in Kilobits / second at receiver end

The above comparison clearly indicates the strength of
TCP CLAP over TCP NewReno in the presence of
interferences at TCP, which are responsible for causing
network congestion, resulted into the packet loss. This
demonstrates effectiveness of TCP ACC even in the presence
of LDA. The performance of TCP CLAP in presence of link
failures has been evaluated. A BER variation at link layer is
considered to be the key parameter.

The simulation results shows that with the introduction of
LDA scheme in TCP ACC, the performance is much
improved. This is certainly due to the ability of TCP to
differentiate between different types of losses as mentioned
earlier and its appropriate triggering of congestion control
algorithm based on the estimate from MAC layer. A
performance comparison between various schemes is again
carried out using simulations under NS2. The results of
above comparisons are as tabulate below.

TABLE IV. THROUGHPUT COMPARISON FOR BER

MAC

BER

Throughput*

NewReno TCP CLAP
Improvement

in %

0 254.418 263.689 3.52

0.05 216.504 241.312 10.28

0.07 197.757 214.85 7.96

0.1 155.453 196.34 20.82
* Indicates throughput measured in Kilobits / second at receiver end.

dupacks = 3

For all the not acknowledged segments

for (i=0, i<= n, i++)

Retry Count ++;

Retry Count = Retry

Limit

Loss_estimation =1

(case of signal loss)

Newreno reaction

 is triggered for congestion.

dupacks ++;

Yes

Yes

No

ack

No

/* at MAC layer */

If (segment is retransmitted)

\\ For each retransmission counter is incremented.

Retry count ++;

If (Retry Count = Retry Limit)

/* In this case the segment loss is mainly due to link

failure rather than congestion. */

 LDA_Estimator = 1;

 end if

end if

/* at Transport Layer */

if (no. of duplicate acks = 3)

for(i = 0; i < = n; i ++)

if (LDA_Estimator = 1)

/* Calculated at MAC Layer */

Flag = 1;

/* Flag =1, prevents triggering of congestion control

algorithm in TCP ACC */

 end if;

 end if;

end if;

Comparisons (as summarized in table III and IV) based
on the simulation results, indicate performance improvement
in TCP CLAP over TCP NewReno. It is also observed that
the percentage increase in improvement is higher with higher
value of BER and Interference Rate. This is the case mainly
with wireless networks. At the same time it is also observed
that the performance of TCP CLAP is not tainted while
operated with lower value of BER or Interference in the
network

Performance of TCP CLAP with different traffic pattern
is also evaluated, considering the busty traffic in wireless
networks. For that a single TCP connection between two
nodes over a wireless link is simulated. To observe impact of
the traffic pattern on the efficiency of TCP CLAP, 3 ftp
connections were simulated one after another for different
time intervals, as shown in table V below.

TABLE V. DIFFERENT TRAFFIC PATTERNS FOR SIMULATIONS

Duration in Sec

Pattern
ftp1 ftp2 ftp3

P1 1-30 35- 65 70-100

P2 1-10 15-45 50-100

P3 1-50 55-85 90-100

P4 1-70 75-85 90-100

The comparison between TCP NewReno and TCP CLAP
for different traffic pattern is shown in table below. The
simulation results clearly expose the efficiency of TCP
CLAP over TCP NewReno under changing traffic patterns in
the network.

TABLE VI. THROUGHPUT COMPARISON

BER P1 P2

 TCP *

NewReno

TCP *

CLAP

TCP *

NewReno

TCP *

CLAP

0.01 249.433 250.729 254.418 263.689

0.05 216.504 241.312 230.442 240.502

0.1 197.757 214.85 201.851 221.754

0.5 8.97 9.5 9.746 9.869

BER P3 P4

 TCP *

NewReno

TCP *

CLAP

TCP *

NewReno

TCP *

CLAP

0.01 243.428 247.714 254.418 263.689

0.05 206. 439 221. 172 224.412 225. 022

0.1 190. 572 204. 582 191. 516 198. 463

0.5 6.999 7.721 7.023 7.721
* Indicates throughput measured in Kilobits / second at receiver end

VI. CONCLUSIONS

The wireless links are suffering a lot mainly by link
errors and large propagation delays. Both the factors cause
decrease in the acceleration of TCP transmission rate and
subsequently, in the overall link utilization. This paper
illustrates performance optimization in TCP with the help of
cross layer mechanism between TCP and MAC layer
protocols. The algorithm differentiates between packet loss
due to network congestion and the same due to error in the
transmission link. Identification of the reason for the packet
loss helps TCP to trigger its congestion control mechanism

appropriately, which prevents transmission ceases and
reduction in congestion window unnecessarily, in absence of
congestion. Subsequently, an approach to make TCP
congestion control more efficient using adaptive approach
based on parallel connection is also evaluated.

The modified TCP, referred as TCP CLAP, attempts to
differentiate between network congestion and link failures
during packet transmission and triggers TCP congestion
Control whenever packet loss is because of network
congestion. This in turn helps the TCP CLAP to avoid
negative impact of reduced transmission rate in absence of
congestion. However, the algorithm does not degrade
performance of TCP in a congested network, since the
modified TCP, referred as TCP ACC reverts back to the
conventional congestion control, with an adaptive policy.
Analysis of the results of simulations carried out indicates
improvement in the overall performance of TCP CLAP in
presence of the modifications. Performance enhancement of
the proposed scheme is higher in case of higher value of
BER. With lower value of BER (Generally with wired
network) no degradation in the TCP performance observed
which reveal portability and reliability of the TCP CLAP on
heterogeneous networks.

 The proposed TCP CLAP outperforms TCP NewReno,
in case of interference caused by the parallel traffic and even
in case of traffic pattern variations. Considering all the
abilities of TCP CLAP, it may be accepted for reliable data
transfer using TCP, over wired as well as wireless networks.

REFERENCES

[1] G. K. Fall, and S. Floyd, “ Simulation – Based comparison of Tahoe,
Reno and SACK TCP”, Computer Communications Review ACM-
SIGCOMM, Vol.26, No.3 , July 1996.

[2] N. K. G. Samaraweera, “Non-Congestion Packet Loss Detection for
TCP error recovery using wireless links”, IEE Proc. on
Communications, Vol 146, No.4, Aug 1999, pp 222-230.

[3] W. Stevens, “ TCP Slow Start, Congestion Avoidance , Fast
Retransmit and Fast Recovery Algorithms”, January 1997, RFC 2001.

[4] Motoharu Miyake and Hiroshi Inamura, “TCP Enhancement Using
Rcovery of Lost Retransmissions for NewReno TCP”, IPSJ Digital
Courier, Vol 1 , Sep. 2005. pp 370-381.

[5] A Capone, L. Fratta, and F. Martignon, “ Bandwidth Estimation
Schemes for TCP over Wireless Networks”, IEEE transactions on
Mobile Computing, vol.3, no. 2, 2004.

[6] K. Xu, Y.Tian, and N. Ansari, “ TCP-Jersey for Wireless IP
Communications.”, IEEE Journal on Selected Areas in
Communications, vol. 22, no. 4, May 2004.

[7] A. Bakre and B. Badrinath, “I-TCP: Indirect TCP for mobilehosts,” in
Proc. 15th International Conf. on Distributed Computing Systems
(ICDCS), May 1995.

[8] H. Balakrishnan, V. Padmanabhan, S. Seshan, and R. Katz,
“Acomparison of mechanisms for improving TCP performance over
wireless links,” in ACM SIGCOMM, Stanford, CA, August 1996.

[9] A. DeSimone, M. Chuah, and O. Yue, “Throughput performance of
transport-layer protocols over wireless LANs,” in Proc. Globecom
’93, December 1993.

[10] Prof. Purvang Dalal, “Adaptive TCP: Enhancing Performance over
Heterogeneous Networks”. ICOICT 2009, SCT College of
Engineering, Trivandrum, Kerala, INDIA. February 2009.

[11] N. Vaidya, M. Mehta, C. Perkins, and G. Montenegro.: “Delayed
duplicate acknowledgements: A TCP-unaware approach to improve
performance of TCP over wireless”. Technical Report, Computer
Science Dept., Texas A&M University, February 1999.

[12] S. Mascolo, M.Y. Sanadidi, C. Casetti and R. Wang, “ TCp
Westwood: End to End Congestion Control for Wired/Wireless
Networks”, Wireless Networks Journal, vol.8, pp. 467-479, 2002.

