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Abstract

Previous available results for the probability of outage
with multiple Nakagami interferers with non-integer fad-
ing parameters have been derived using the characteristic
function approach. This was done by converting an im-
proper real integral, whose integrand has a singularity at
the origin, to a contour integral, which was then evalu-
ated using the method of residues. However, the method
is mathematically valid only when the real integral ex-
ists. In this paper, we show that the existence of the real
integral has not been established and the earlier approach
is therefore incorrect. For the special case of multiple
Nakagami interferers with similar non-integer fading pa-
rameters, using a slightly different but rigorous approach,
we £nd an exact expression for the probability of outage.

1. Introduction

A characteristic function approach has been suggested by
Zhang in [1] to compute the outage probability in a cel-
lular network with multiple Nakagami interferers having
arbitrary fading parameters. This method involves the
transformation of a real improper integral to a complex
integral. The complex integral is then evaluated using the
residue theorem, which gives the Cauchy principal value
(c.p.v) of the real integral [2]. When the integral exists,
its value is equal to the c.p.v [3]. However, the integrand
in [1] has a singularity at the origin, which means that
the existence of the integral has to be proved before the
contour integral approach can be used.

In this paper, we show how the c.p.v of the integral
has been used to compute the probability of outage in
[1], without proving the existence of the integral. Then,
for the case of multiple Nakagami interferers with similar
non-integer fading parameters, we propose a slightly dif-
ferent approach, where we express the integral as the sum
of two complex integrals choosing different contours for
integrating the two, establishing the convergence of the
integrals wherever necessary. Cauchy’s integral formula
for analytic functions [2] is then used to evaluate these in-
tegrals to obtain an expression for the outage probability.

The rest of the paper is organized as follows. In Sec-

tion II, we introduce the system model and present the
formula for calculating the outage probability in terms of
a real integral involving the characteristic function. Then
the ¤aw in the process of transforming the real integral to
the corresponding contour integral in [1] is described in
Section III. In Section IV, the modi£ed approach to eval-
uate the outage probability for the special case of Nak-
agami interferers with similar fading parameters is pre-
sented. Conclusions are available in Section V.

2. system model

We follow the notation in [1], withr0(t) being the am-
plitude of the desired signal received at the mobile unit
andrk(t), k = 1, . . . , L are the amplitudes of theL
co-channel Nakagami interferers. The probability den-
sity function (PDF) ofξk = r2

k(t) follows the Gamma
distribution and is given by

fξk
(y) = (λk)mk

ymk−1

Γ(mk)
exp(−λky), y ≥ 0, (1)

k = 0, · · · , L wheremk is the fading parameter with val-
ues ranging from[0.5,∞) andm0 is a positive integer.
Also,

λk =
mk

Ωk

(2)

whereΩk > 0 is the average power ofrk(t). The mean
and variance ofξk are

E[ξk] = Ωk,

V ar[ξk] =
Ω2

k

mk

. (3)

In the above scenario, outage occurs in the event of
q
∑L

k=1 ξk > ξ0, whereq is the prescribed power pro-
tection ratio. We de£ne the random variable

γ = q

L
∑

k=1

ξk − ξ0. (4)

Hence, the probability of outagePout = P (γ > 0). The
characteristic function of the random variableγ is given
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Figure 1: The contourC.

by [1]

φγ(t) =
1

∏L
k=1(1 − jqt

λk
)mk(1 + jt

λ0

)m0

. (5)

Then, using the Gil-Pelaez theorem [4],

Pout =
1

2
+

1

2πj

∫

∞

−∞

φγ(t)

t
dt. (6)

We de£ne

Iγ =

∫

∞

−∞

φγ(t)

t
dt. (7)

3. The contour integral

Following the method outlined in [1], we consider the
closed path C in the complex plane in Fig. 1. LetCR and
Cr be two semi-circular paths with radiiR andr respec-
tively. The contour integral

∫

C

φγ(z)

z
dz =

∫

CR

φγ(z)

z
dz +

∫

−r

−R

φγ(t)

t
dt+

∫

Cr

φγ(z)

z
dz +

∫ R

r

φγ(t)

t
dt. (8)

Since the denominator ofφγ(z)
z

is at least two units
greater than the numerator, we obtain [3]

lim
R→∞

∫

CR

φγ(z)

z
dz = 0. (9)

Also, it has been shown in [1] that

lim
r→0

∫

Cr

φγ(z)

z
dz = −jπ. (10)

From (3), (9) and (10), we get

lim
r→0

R→∞

∫

−r

−R

φγ(t)

t
dt +

∫ R

r

φγ(t)

t
dt = jπ +

∫

C

φγ(z)

z
.

(11)
Sincem0 is an integer,φγ(z) has multiple poles of order
m0 at z = jλ0, which lies in the upper half plane inside
the contourC. Hence, using the residue theorem [2],

∫

C

φγ(z)

z
=

2πj

(m0 − 1)!

dm0−1

dzm0−1

[

φγ(z)

z

]

z=jλ0

. (12)

De£nition: The Cauchy principal value (c.p.v) of a de£-
nite integral

∫ B

A

f(t)dt (13)

whose integrand becomes in£nite at a point a in the in-
terval of integration, i.e.

lim
t→a

|f(t)| = ∞ (14)

is de£ned as [2]

c.p.v

∫ B

A

f(t)dt = lim
ǫ→0

[

∫ a−ǫ

A

f(t)dt +

∫ B

a−ǫ

f(t)dt

]

.

(15)
The integral itself is de£ned as

∫ B

A

f(t)dt = lim
ǫ→0

∫ a−ǫ

A

f(t)dt + lim
η→0

∫ B

a−η

f(t)dt

(16)
where bothǫ andη approach zero through positive values.
It may so happen that neither of the two limits in (16)
exist, i.e. that the integral itself has no meaning but the
c.p.v de£ned by (15) exists. This leads to the following
lemma [3].
Lemma 3.1:When a de£nite integral has a singularity
in the interval of integration and the c.p.v exists, then, if
the integral exists, the c.p.v is equal to the value of the
integral.

Using the de£nition of the c.p.v in (15), from (11), we
obtain

c.p.v

∫

∞

−∞

φγ(t)

t
dt = lim

r→0

R→∞

∫

−r

−R

φγ(t)

t
dt +

∫ R

r

φγ(t)

t
dt = jπ +

∫

C

φγ(z)

z
. (17)

Here, we note that (17) has been used to evaluateIγ in
[1], but the existence of the integral itself has not been
established. A special case when the integral actually
does not converge is given in the following example.

Example 1: Let L = 1,m0 = 1,m1 = 1 and
λ1

λ0

= q. This choice ofq may not be practical, but



since we are challenging the mathematical validity of the
approach in [1], we are justi£ed in using it. Then

φγ(t) =
1

1 + t2

λ2

0

. (18)

Hence,

Iγ =

∫

∞

−∞

φγ(t)

t
dt (19)

=

∫

∞

−∞

dt

t
(

1 + t2

λ2

0

)

=

∫

∞

−∞

dt

t (1 + t2)
(20)

after appropriate substitutions. Since

1

t (1 + t2)
=

1

t
−

t

1 + t2
, (21)

we obtain

Iγ =

∫

∞

−∞

dt

t
−

∫

∞

−∞

t

1 + t2
dt. (22)

From elementary calculus, it is obvious that neither of
the integrals on the right hand side of (22) converge, so
Iγ does not converge in this case. However, using (15), it
is easy to see that

c.p.v Iγ = 0, (23)

which can also be veri£ed using (17).
Thus, the actual relation betweenPout andφγ(t) in

[1] is

Pout =
1

2
+

1

2πj
× c.p.v Iγ

=
1

2
+

1

2πj
× c.p.v

∫

∞

−∞

φγ(t)

t
dt, (24)

which is different from (6) whenIγ does not exist, as in
Example 1.

4. Interferers with similar fading
parameters

For the special case whenmk = m andλk = λ, from
(5), we obtain

φγ(t) =
1

(1 − jqt
λ

)mL(1 + jt
λ0

)m0

. (25)

With an appropriate substitution of variables,

Iγ =

∫

∞

−∞

φγ(t)

t
dt

=

∫

∞

−∞

dt

t(1 − jqλ0t
λ

)mL(1 + jt)m0

. (26)

Since

1

t(1 + jt)m0

=
dt

t
− j

m0
∑

n=1

1

(1 + jt)n
, (27)

substitutingσ = qλ0

λ
, (26) becomes

Iγ =

∫

∞

−∞

dt

t(1 − jσt)mL
−

j

m0
∑

n=1

∫

∞

−∞

dt

(1 − jσt)mL(1 + jt)n
, (28)

Now, let

J =

∫

∞

−∞

dt

t(1 − jσt)mL
(29)

and

Jn = j

∫

∞

−∞

dt

(1 − jσt)mL(1 + jt)n
. (30)

4.1. The integral Jn

The integrand in (30) has multiple poles atj in the upper
half plane and no singularities on the real line. Further,
the degree of the denominator is more than a unit greater
than that of the numerator. Thus, it can be converted to a
contour integral [3]

Jn = j

∫

S

dz

(1 − jσz)mL(1 + jz)n
, (31)

whereS is a semi-circle of in£nite radius. Applying the
residue theorem, we obtain

Jn =
2πj

(n − 1)!jn−1

dn−1

dzn−1

[

1

(1 − jσz)mL

]

z=j

, (32)

n = 1, . . . ,m0. The above expression admits a closed
form

Jn = 2πj
σn−1(mL)n−1

(n − 1)!(1 + σ)mL+n−1
, (33)

where thefactorial function (γ)q is de£ned as

(γ)q =

q
∏

r=1

(γ + r − 1), (γ)0 = 1, γ 6= 0, (34)

q being a positive integer.



4.2. The integral J

The integrand inJ has a singularity at the origin. Hence
we choose the contour C in Fig. 1, and since the degree
of the denominator of the integrand inJ is more than a
unit greater than that of the numerator, we obtain from
(17)

c.p.v J = jπ +

∫

C

dz

z(1 − jσz)mL
. (35)

Since the integrand inJ is analytic in the region enclosed
by the contourC, we have, from Cauchy’s integral for-
mula [2]

∫

C

dz

z(1 − jσz)mL
= 0. (36)

Thus,

c.p.v J = jπ. (37)

By a change of variables (fromt to−t) in (29), we obtain

J = −

∫

∞

−∞

dt

t(1 + jσt)mL
. (38)

Adding (29) and (38)

2J =

∫

∞

−∞

dt

t

[

1

(1 − jσt)mL
−

1

(1 + jσt)mL

]

.(39)

From (39), we have

2J =

∫

∞

−∞

dt

t

[

(1 + jσt)mL − (1 − jσt)mL

(1 + σ2t2)mL

]

.(40)

In the above, substitutingtan θ = σt,

2J = 2j

∫ π
2

−
π
2

sec2 θ

tan θ

sin(mLθ)

secmL θ
dθ, (41)

which gives us

J = j

∫ π
2

−
π
2

sin(mLθ)

sin θ
cosmL−1 θ dθ. (42)

The singularity att = 0 in (29), which is re¤ected at
θ = 0 in (42), vanishes due to the expressionsin(mLθ)

sin θ
in

the integrand. Thus, the integral

∫ π
2

0

sin(mLθ)

sin θ
cosmL−1 θ dθ (43)

has an integrand that is continuous in the interval of inte-
gration and is non-singular at the origin. This is suf£cient
to conclude that the above integral exists [3]. Hence, the
integralJ exists. We note that this happens because the
interferers have similar fading parameters. From Lemma
3.1 and (37),

J = jπ. (44)

From (6),(28), (33) and (44), after substituting forσ, we
obtain the outage probability for multiple Nakagami in-
terferers with similar non-integer fading parameters

Pout = 1 −

m0−1
∑

n=0

(qλ0)
n(mL)n

n!(λ + qλ0)mL+n
. (45)

5. Conclusions

The real improper integral obtained using [4] to evaluate
the outage probability in [1] was assumed to converge in
general. We have shown that this is not true by providing
a counter example, thus concluding that the approach in
[1] is not mathematically rigorous. We then provided an
alternative method for evaluating the outage probability
for the special case of Nakagami interferers having simi-
lar non-integer fading characteristics.
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