# Averaging $Q(\|\mathbf{X}\|)$ for a Complex Gaussian Random Vector X: A Novel Approach 

G. V. V. Sharma<br>Applied Research Group<br>Satyam Computer Services Limited, Bangalore, INDIA 560012<br>Email: Vishwanath_Sharma@satyam.com


#### Abstract

In this paper, we compute $E[Q(\|\mathbf{X}\|]$, where $\mathbf{X}$ is an $n \times 1$ complex circularly Gaussian vector, $\|\mathbf{X}\|$ is the $L^{2}$ norm of X and $E[]$ is the expectation operator. This is done by finding the characteristic function of the decision variable and subsequently applying the inversion formula to obtain a one dimensional real integral expression. This integral is then converted to a contour integral which is evaluated using a variant of the Cauchy's integral formula to obtain an expression for $E[Q(\|\mathbf{X}\|]$. We then provide some applications of the above result by obtaining expressions for error probabilities in fading channels.


## I. Introduction

The average of a Q-function expression is of interest in finding general expressions for the probability of symbol/bit error in slowly fading communication channels, where the argument of the Q -function is a function of a random variable with a well defined probability density function that depends on the kind of fading experienced by the channel [1]. Another application is in finding the bit error probability of the desired user in a fading channel when multiuser detection is being employed at the receiver [2].
The average of a Q-function whose argument is proportional to the square root of a non-central chi-squared random variable with $2 n$ degrees of freedom is obtained by deriving a recursion relation [3]. However, this approach involves integrating the product of the Q -function and the chi-square probability density function. [2]. For the central chi-square distribution, an approach using Craig's formula [4] and the moment generating function (MGF) of the random variable is outlined in [1]. This method is quite complicated but gives the most general closed form expression when the Q -function argument is proportional to the square root of a Nakagami- $m$ [5] random variable.

In this paper, we propose a simple method to average the Q function whose argument is the $L^{2}$ norm of a non zero-mean complex circularly Gaussian vector using the characteristic function (CF) of a non-central chi-square distribution [5] and the inversion formula for the cumulative distribution function [6].

## II. Problem Statement

Let $\mathbf{X}$ be an $n \times 1$ vector whose entries are complex circularly Gaussian random variables such that

$$
\begin{align*}
E[\mathbf{X}] & =\mathbf{m}  \tag{1}\\
E\left[(\mathbf{X}-\mathbf{m})(\mathbf{X}-\mathbf{m})^{\dagger}\right] & =2 \sigma^{2} \mathbf{I}_{n}
\end{align*}
$$

where $\{\dagger\}$ represents the complex conjugate-transpose operation and $\mathbf{I}_{n}$ is the $n \times n$ identity matrix. Let $R=\|\mathbf{X}\|^{2}$, where $\|\mathbf{X}\|$ is the $L^{2}$ norm of the vector $\mathbf{X}$. Then $R$ is non-central chi-square distributed with $2 n$ degrees of freedom [5] and

$$
\begin{equation*}
E[Q(\|\mathbf{X}\|]=E[Q(\sqrt{R})] \tag{2}
\end{equation*}
$$

Let $V$ be a Gaussian random variable with zero mean and unit variance. From [7], we obtain

$$
\begin{align*}
E[Q(\sqrt{R})] & =E[P(V>\sqrt{R})]  \tag{3}\\
& =\frac{1}{2} P\left(R-V^{2}<0\right) \\
& =\frac{1}{2} P(\Delta<0),
\end{align*}
$$

where $\Delta=R-V^{2}$. The characteristic function of $\Delta$ is given by

$$
\begin{align*}
\Phi_{\Delta}(t) & =E\left[e^{j t \Delta}\right]=E\left[e^{j t R}\right] E\left[e^{-j t V^{2}}\right]  \tag{4}\\
& =\Phi_{R}(t) \Phi_{V^{2}}(-t)
\end{align*}
$$

Since $V$ is Gaussian, $V^{2}$ chi-square distributed. Hence, we obtain [5]

$$
\begin{align*}
& \Phi_{R}(t)=\frac{e^{\frac{j\|\mathbf{m}\|^{2} t}{1-2 j \sigma^{2} t}}}{\left(1-2 j \sigma^{2} t\right)^{n}},  \tag{5}\\
& \Phi_{V^{2}}(-t)=\frac{1}{(1+2 j t)^{\frac{1}{2}}} .
\end{align*}
$$

Substituting $\Phi_{R}(t)$ and $\Phi_{V^{2}}(-t)$ from (5) in (4),

$$
\begin{equation*}
\Phi_{\Delta}(t)=\frac{e^{\frac{j\|\mathbf{m}\|^{2} t}{1-2 j \sigma^{2} t}}}{\left(1-2 j \sigma^{2} t\right)^{n}(1+2 j t)^{\frac{1}{2}}} \tag{6}
\end{equation*}
$$

Since

$$
\begin{equation*}
\frac{j\|\mathbf{m}\|^{2} t}{1-2 j \sigma^{2} t}=-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}+\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}\left(1-2 j \sigma^{2} t\right)} \tag{7}
\end{equation*}
$$

(6) can be written as

$$
\begin{equation*}
\Phi_{\Delta}(t)=\frac{e^{-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}} e^{\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}\left(1-2 j \sigma^{2} t\right)}}}{\left(1-2 j \sigma^{2} t\right)^{n}(1+2 j t)^{\frac{1}{2}}} \tag{8}
\end{equation*}
$$

According to the inversion formula of Gil-Pelaez [6], the cumulative distribution function

$$
\begin{align*}
F_{\Delta}(x) & =P(\Delta<x)  \tag{9}\\
& =\frac{1}{2}+\frac{1}{2 \pi j} \int_{0}^{\infty} \frac{e^{j t x} \Phi_{\Delta}(-t)-e^{-j t x} \Phi_{\Delta}(t)}{t} d t .
\end{align*}
$$

From (9), we have

$$
\begin{aligned}
P(\Delta<0) & =\frac{1}{2}+\frac{1}{2 \pi j} \int_{0}^{\infty} \frac{\Phi_{\Delta}(-t)-\Phi_{\Delta}(t)}{t} d t \\
& =\frac{1}{2}+\frac{1}{2 \pi j} \int_{-\infty}^{\infty} \frac{\Phi_{\Delta}(-t)}{t} d t
\end{aligned}
$$

From (8) and (10),

$$
\begin{equation*}
P(\Delta<0)=\frac{1}{2}+\frac{e^{-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}}}{2 \pi j} \int_{-\infty}^{\infty} \frac{e^{\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}\left(1+2 j \sigma^{2} t\right)}}}{t(1-2 j t)^{\frac{1}{2}}\left(1+2 j \sigma^{2} t\right)^{n}} d t \tag{11}
\end{equation*}
$$

Expanding the exponential in the numerator of the integrand in (11) as a power series and interchanging the order of integration and summation, we obtain
$P(\Delta<0)=\frac{1}{2}+\frac{e^{-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}}}{2 \pi j} \sum_{p=0}^{\infty} \frac{1}{p!}\left(\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}\right)^{p} \int_{-\infty}^{\infty} \frac{d t}{t(1-2 j t)^{\frac{1}{2}}\left(1+2 j \sigma^{2} t\right)^{n+p}}$.
It is easy to verify that

$$
\begin{equation*}
\frac{1}{t\left(1+2 j \sigma^{2} t\right)^{n}}=\frac{1}{t}-2 j \sigma^{2} \sum_{k=1}^{n} \frac{1}{\left(1+2 j \sigma^{2} t\right)^{k}} \tag{13}
\end{equation*}
$$

If we let

$$
\begin{equation*}
I_{n}=\int_{-\infty}^{\infty} \frac{d t}{t(1-2 j t)^{\frac{1}{2}}\left(1+2 j \sigma^{2} t\right)^{n}} \tag{14}
\end{equation*}
$$

(12) can be written as

$$
\begin{equation*}
P(\Delta<0)=\frac{1}{2}+\frac{e^{-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}}}{2 \pi j} \sum_{p=0}^{\infty} \frac{1}{p!}\left(\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}\right)^{p} I_{n+p} \tag{15}
\end{equation*}
$$

From (13) and (14), we now have

$$
\begin{equation*}
I_{n}=\int_{-\infty}^{\infty} \frac{1}{(1-2 j t)^{\frac{1}{2}}}\left[\frac{1}{t}-2 j \sigma^{2} \sum_{k=1}^{n} \frac{1}{\left(1+2 j \sigma^{2} t\right)^{k}}\right] d t \tag{16}
\end{equation*}
$$

which, after changing the order of the integral and the summation can be written as
$I_{n}=\int_{-\infty}^{\infty} \frac{d t}{t(1-2 j t)^{\frac{1}{2}}}-2 j \sigma^{2} \sum_{k=1}^{n} \int_{-\infty}^{\infty} \frac{d t}{(1-2 j t)^{\frac{1}{2}}\left(1+2 j \sigma^{2} t\right)^{k}}$.
In the above, letting

$$
\begin{align*}
J & =\int_{-\infty}^{\infty} \frac{d t}{t(1-2 j t)^{\frac{1}{2}}},  \tag{17}\\
J_{k} & =2 j \sigma^{2} \int_{-\infty}^{\infty} \frac{d t}{(1-2 j t)^{\frac{1}{2}}\left(1+2 j \sigma^{2} t\right)^{k}}, \tag{18}
\end{align*}
$$

we can write (14) as

$$
\begin{equation*}
I_{n}=J-\sum_{k=1}^{n} J_{k} \tag{19}
\end{equation*}
$$

In the next section, we first show that $J$ and $J_{k}$ can be reduced to simple real and contour integrals respectively and then solve them.

## III. SOLVING FOR $I_{n}$

## A. The Real Integral

In (17), through a change of variables (from $t$ to $-t$ ), we obtain

$$
\begin{equation*}
J=-\int_{-\infty}^{\infty} \frac{d t}{t(1+2 j t)^{\frac{1}{2}}} \tag{20}
\end{equation*}
$$

Adding the expressions for $J$ in (17) and (20),

$$
\begin{align*}
2 J & =\int_{-\infty}^{\infty} \frac{d t}{t(1-2 j t)^{\frac{1}{2}}}-\int_{-\infty}^{\infty} \frac{d t}{t(1+2 j t)^{\frac{1}{2}}}  \tag{21}\\
& =\int_{-\infty}^{\infty} \frac{1}{t}\left[\frac{(1+2 j t)^{\frac{1}{2}}-(1-2 j t)^{\frac{1}{2}}}{\left(1+4 t^{2}\right)^{\frac{1}{2}}}\right] d t \tag{22}
\end{align*}
$$

Multiplying the numerator and denominator of the integrand in (22) by $\left[(1+2 j t)^{\frac{1}{2}}-(1-2 j t)^{\frac{1}{2}}\right]$,

$$
\begin{equation*}
J=\frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{t}\left[\frac{(1+2 j t)-(1-2 j t)}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}\right\}}\right] d t \tag{23}
\end{equation*}
$$

Cancelling out all common factors,

$$
\begin{equation*}
J=2 j \int_{-\infty}^{\infty} \frac{d t}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}\right\}} \tag{24}
\end{equation*}
$$

In the above equation, we note that $(1-2 j)^{\frac{1}{2}}$ is the complex conjugate of $(1+2 j)^{\frac{1}{2}}$. Hence, the integrand in (24) is real as well as an even function of $t$. Thus, we get (see Appendix)

$$
\begin{align*}
J & =4 j \int_{0}^{\infty} \frac{d t}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}\right\}}  \tag{25}\\
& =j \pi \tag{26}
\end{align*}
$$

## B. The contour integral

The integral in (18) can be solved easily if it can be converted to a contour integral. Towards this end, we state the following Lemma [8].

Lemma 3.1: Let $g(x)$ be a function of a real variable $x$ such that $|g(x)|$ has a denominator different from zero for all real $x$ and is of degree in excess of a unit higher than the degree of the numerator. Then

$$
\begin{equation*}
\int_{-\infty}^{\infty} g(x) d x=\int_{C} g(z) d z \tag{27}
\end{equation*}
$$

where $C$ is a semicircle in the complex upper half-plane whose diameter is the real-axis and the integration is in the anticlockwise sense.

For the integrand in (18), $k \geq 1$ and the degree of the denominator is greater than that of the numerator by $k+\frac{1}{2}$. From Lemma 3.1, we get

$$
\begin{align*}
J_{k} & =2 j \sigma^{2} \int_{C} \frac{d z}{(1-2 j z)^{\frac{1}{2}}\left(1+2 j \sigma^{2} z\right)^{k}}  \tag{28}\\
& =\left(2 j \sigma^{2}\right)^{1-k} \int_{C} \frac{d z}{(1-2 j z)^{\frac{1}{2}}\left(z-\frac{j}{2 \sigma^{2}}\right)^{k}} .
\end{align*}
$$

We now present a formula for finding the derivatives of an analytic function [8] and subsequently use it to evaluate $I_{k}$.

Lemma 3.2: If $g(z)$ is analytic in a domain $D$, then it has derivatives of all orders in $D$ which are then also analytic functions in $D$. The value of the $(k-1)$ th derivative at a point $z_{0}$ in $D$ is given by the formula

$$
\begin{equation*}
g^{(k-1)}\left(z_{0}\right)=\frac{(k-1)!}{2 \pi j} \int_{L} \frac{g(z)}{\left(z-z_{0}\right)^{k}} \quad(k=1,2, \ldots) ; \tag{29}
\end{equation*}
$$

where $L$ is any simple closed path in $D$ which encloses $z_{0}$ an whose full interior belongs to $D$; the curve is traversed in the counterclockwise sense and $g^{(0)}\left(z_{0}\right)=g\left(z_{0}\right)$, by definition. The function

$$
\begin{equation*}
f(z)=\frac{1}{(1-2 j z)^{\frac{1}{2}}} \tag{30}
\end{equation*}
$$

is analytic in the upper half-plane and $C$ is a closed path in it. Since (28) can be written as

$$
\begin{equation*}
J_{k}=\left(2 j \sigma^{2}\right)^{1-k} \int_{C} \frac{f(z)}{\left(z-\frac{j}{2 \sigma^{2}}\right)^{k}} d z \tag{31}
\end{equation*}
$$

and the point $\frac{j}{2 \sigma^{2}}$ lies within C, using Lemma 3.2, we obtain

$$
\begin{equation*}
J_{k}=\frac{2 \pi j\left(2 j \sigma^{2}\right)^{1-k}}{(k-1)!} \frac{d^{k-1}}{d z^{k-1}}\left[\frac{1}{(1-2 j z)^{\frac{1}{2}}}\right]_{z=\frac{j}{2 \sigma^{2}}} \tag{32}
\end{equation*}
$$

which, after some simplification, yields

$$
\begin{align*}
J_{k} & =\frac{2 \pi j \sigma}{\sqrt{1+\sigma^{2}}}, k=1  \tag{33}\\
& =\frac{2 \pi j \sigma}{(k-1)!} \frac{\frac{1}{2} \frac{3}{2} \ldots \frac{(2 k-3)}{2}}{\left(1+\sigma^{2}\right)^{k-\frac{1}{2}}}, \quad 1<k \leq n
\end{align*}
$$

Substituting the expressions obtained in (26) and (33) in (19), we get

$$
\begin{align*}
I_{n} & =j \pi-\frac{2 \pi j \sigma}{\sqrt{1+\sigma^{2}}}\left[1+\sum_{k=2}^{n} \frac{\frac{1}{2} \cdot \frac{3}{2} \ldots \frac{(2 k-3)}{2}}{(k-1)!\left(1+\sigma^{2}\right)^{k-1}}\right]  \tag{34}\\
& =j \pi-\frac{2 \pi j \sigma}{\sqrt{1+\sigma^{2}}}\left[1+\sum_{k=1}^{n-1} \frac{\frac{1}{2} \cdot \frac{3}{2} \ldots \frac{(2 k-1)}{2}}{k!\left(1+\sigma^{2}\right)^{k}}\right] \\
& =2 \pi j\left[\frac{1}{2}-\frac{\sigma}{\sqrt{1+\sigma^{2}}} \sum_{k=0}^{n-1}\binom{2 k}{k}\left\{\frac{1}{4\left(1+\sigma^{2}\right)}\right\}^{k}\right]
\end{align*}
$$

## IV. CLOSED FORM EXPRESSION FOR $E[Q(\|\mathbf{X}\|)]$

From (15) and (34),

$$
\begin{align*}
P(\Delta<0)=1-\frac{\sigma e^{-\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}}}{\sqrt{1+\sigma^{2}}} & \sum_{p=0}^{\infty} \sum_{k=0}^{n+p-1} \frac{1}{p!}\left(\frac{\|\mathbf{m}\|^{2}}{2 \sigma^{2}}\right)^{p}  \tag{35}\\
& \times\binom{ 2 k}{k}\left\{\frac{1}{4\left(1+\sigma^{2}\right)}\right\}^{k}
\end{align*}
$$

Let $\alpha=\frac{\|\mathbf{m}\|}{2 \sigma^{2}}$ and $\beta=\frac{1}{1+\sigma^{2}}$. Then, changing the indices of summation,

$$
\begin{equation*}
P(\Delta<0)=1-e^{-\alpha} \sqrt{1-\beta}(A+B) \tag{36}
\end{equation*}
$$

where ${ }^{1}$

$$
\begin{gather*}
A=\sum_{p=0}^{\infty} \sum_{k=0}^{p}\binom{2 k}{k}\left\{\frac{\beta}{4}\right\}^{k} \frac{\alpha^{p}}{p!}  \tag{37}\\
B=\sum_{p=0}^{\infty} \sum_{k=p}^{n+p-1}\binom{2 k}{k}\left\{\frac{\beta}{4}\right\}^{k} \frac{\alpha^{p}}{p!} . \tag{38}
\end{gather*}
$$

We define the factorial function [9] as

$$
\begin{equation*}
(\gamma)_{q}=\prod_{r=1}^{q}(\gamma+r-1), \quad(\gamma)_{0}=1, \gamma \neq 0 \tag{39}
\end{equation*}
$$

where $q$ is a positive integer.

## A. The $B$ series

Since

$$
\begin{equation*}
\binom{2 k}{k}=\frac{4^{k}\left(\frac{1}{2}\right)_{k}}{k!} \tag{40}
\end{equation*}
$$

we obtain

$$
\begin{equation*}
B=\sum_{p=0}^{\infty} \sum_{k=p}^{n+p-1} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \frac{\alpha^{p}}{p!} \tag{41}
\end{equation*}
$$

Changing the limits of summation in (41),

$$
\begin{align*}
B & =\sum_{p=0}^{\infty} \sum_{k=0}^{n-1} \frac{\left(\frac{1}{2}\right)_{k+p} \beta^{k+p}}{(k+p)!} \frac{\alpha^{p}}{p!}  \tag{42}\\
& =\sum_{k=0}^{n-1} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \sum_{p=0}^{\infty} \frac{\left(\frac{1}{2}+k\right)_{p}}{(k+1)_{p}} \frac{(\alpha \beta)^{p}}{p!} \\
& =\sum_{k=0}^{n-1}\binom{2 k}{k}\left(\frac{\beta}{4}\right)^{k}{ }_{1} F_{1}\left(\frac{1}{2}+k ; k+1 ; \alpha \beta\right)
\end{align*}
$$

where ${ }_{1} F_{1}(a ; b ; x)$ is the confluent hypergeometric function [9]. According to Kummer's formula for the confluent hypergeometric function,

$$
\begin{equation*}
{ }_{1} F_{1}(a ; b ; x)=e^{x}{ }_{1} F_{1}(b-a ; b ;-x) . \tag{43}
\end{equation*}
$$

Using this result in (42), we obtain

$$
\begin{equation*}
B=\exp (\alpha \beta) \sum_{k=0}^{n-1}\binom{2 k}{k}\left(\frac{\beta}{4}\right)^{k}{ }_{1} F_{1}\left(\frac{1}{2} ; k+1 ;-\alpha \beta\right) \tag{44}
\end{equation*}
$$

${ }^{1}$ We assume that all the infinite series considered henceforth converge.

## B. The A series

We rewrite (37) as

$$
\begin{equation*}
A=\sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \frac{\alpha^{p}}{p!}-\sum_{p=0}^{\infty} \sum_{k=p+1}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \frac{\alpha^{p}}{p!} \tag{45}
\end{equation*}
$$

In the above,

$$
\begin{equation*}
\sum_{p=0}^{\infty} \sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \frac{\alpha^{p}}{p!}=\left(\sum_{p=0}^{\infty} \frac{\alpha^{p}}{p!}\right)\left(\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!}\right) \tag{46}
\end{equation*}
$$

Since $|\beta|<1$, the second sum on the right hand side of (46) is the binomial series, i.e.,

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!}=(1-\beta)^{-\frac{1}{2}} \tag{47}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
A=\frac{e^{\alpha}}{\sqrt{1-\beta}}-S \tag{48}
\end{equation*}
$$

where

$$
\begin{align*}
S & =\sum_{p=0}^{\infty} \sum_{k=p+1}^{\infty} \frac{\left(\frac{1}{2}\right)_{k} \beta^{k}}{k!} \frac{\alpha^{p}}{p!}  \tag{49}\\
& =\sum_{p=0}^{\infty} \sum_{k=1}^{\infty} \frac{\left(\frac{1}{2}\right)_{k+p} \beta^{k+p}}{(k+p)!} \frac{\alpha^{p}}{p!}
\end{align*}
$$

Following the steps in (42), (49) can be written as

$$
\begin{equation*}
S=\sum_{k=1}^{\infty}\binom{2 k}{k}\left(\frac{\beta}{4}\right)^{k}{ }_{1} F_{1}\left(\frac{1}{2}+k ; k+1 ; \alpha \beta\right) \tag{50}
\end{equation*}
$$

The above infinite series has a closed form expression [3]

$$
\begin{gather*}
S=\frac{2 \exp \left(\frac{\alpha \beta}{2}\right)}{\sqrt{1-\beta}}  \tag{51}\\
\times\left[\exp \left\{\frac{\alpha}{2}(1+\beta)\right\} Q_{1}(u, w)-\frac{1}{2}(1+\sqrt{1-\beta}) I_{0}\left(\frac{\alpha \beta}{2}\right)\right] \tag{52}
\end{gather*}
$$

where

$$
\begin{align*}
u & =\sqrt{\frac{\alpha}{2}(2-\beta)-\frac{2}{\beta} \sqrt{1-\beta}}  \tag{53}\\
w & =\sqrt{\frac{\alpha}{2}(2-\beta)+\frac{2}{\beta} \sqrt{1-\beta}}
\end{align*}
$$

and $Q_{1}(u, w)$ is the Marcum Q-function [5]. Substituting (51) in (48) gives us a closed form expression for $A$. Since we already have a compact expression for $B$ in (44), replacing the infinite series for $A$ and $B$ in (35) by their respective closed form expressions, and noting from (2) and (3) that

$$
\begin{equation*}
E[Q(\|\mathbf{X}\|)]=\frac{1}{2} P(\Delta<0) \tag{54}
\end{equation*}
$$

we obtain an exact expression for $E[Q(\|\mathbf{X}\|)]^{2}$.
Corollary: When $\mathbf{X}$ is zero mean, from (34) and (35), we obtain

[^0]\[

$$
\begin{align*}
P(\Delta<0) & =\frac{1}{2}+\frac{I_{n}}{2 \pi j}  \tag{55}\\
& =1-\frac{\sigma}{\sqrt{1+\sigma^{2}}} \sum_{k=0}^{n-1}\binom{2 k}{k}\left\{\frac{1}{4\left(1+\sigma^{2}\right)}\right\}^{k}
\end{align*}
$$
\]

Substituting the above in (54) leads to the well known result [2]
$E[Q(\|\mathbf{X}\|)]=\frac{1}{2}\left[1-\frac{\sigma}{\sqrt{1+\sigma^{2}}} \sum_{k=0}^{n-1}\binom{2 k}{k}\left\{\frac{1}{4\left(1+\sigma^{2}\right)}\right\}^{k}\right]$

## V. Example: Average Probability of Error for NAKAGAMI- $m$ FADING CHANNELS

If a random variable $\alpha$ is Nakagami- $m$ distributed, the random variable $\gamma=\frac{\alpha^{2} \varepsilon_{b}}{N_{0}}$ has the probability density function [5]

$$
\begin{equation*}
p(\gamma)=\frac{m^{m}}{\Gamma(m) \bar{\gamma}} \gamma^{m-1} e^{-m \gamma / \bar{\gamma}} \tag{57}
\end{equation*}
$$

where $\bar{\gamma}=\frac{E\left(\alpha^{2}\right) \varepsilon_{b}}{N_{0}}$. For fading channels, the average probability of error is given by

$$
\begin{equation*}
P_{e}=\int_{0}^{\infty} Q(a \sqrt{\gamma}) p_{\gamma}(\gamma) d \gamma \tag{58}
\end{equation*}
$$

where $a$ is a constant that depends on the specific modulation/detection combination [1]. We note that $\gamma$ has the same distribution as $R$ (when $\mathbf{X}$ has zero mean) with $\sigma^{2}=\frac{\bar{\gamma}}{2 m}$ when $m$ is an integer [5]. Thus, after accounting for the constant $a$ in (58), the average probability of error for a Nakagami-m fading channel is obtained as

$$
\begin{equation*}
P_{e}=\frac{1}{2}\left[1-\sqrt{\frac{a^{2} \bar{\gamma}}{2 m+a^{2}} \bar{\gamma}} \sum_{k=0}^{m-1}\binom{2 k}{k}\left\{\frac{2 m}{4\left(2 m+a^{2} \bar{\gamma}\right)}\right\}^{k}\right] \tag{59}
\end{equation*}
$$

by substituting $\sigma^{2}=\frac{a^{2} \bar{\gamma}}{2 m}$ and replacing $n$ by $m$ in (56). We note that exactly the same result has been arrived at using a different approach in [1], equation (5.18).

## Appendix

Let $1+2 j t=r e^{j \theta}$, where $r=\left(1+4 t^{2}\right)^{\frac{1}{2}}$ and $\cos \theta=\frac{1}{r}$. Since

$$
\begin{equation*}
(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}=2 r^{\frac{1}{2}} \cos \frac{\theta}{2} \tag{60}
\end{equation*}
$$

and

$$
\begin{align*}
\cos \frac{\theta}{2} & =\sqrt{\frac{1}{2}(1+\cos \theta)}  \tag{61}\\
& =\sqrt{\frac{1}{2}\left(1+\frac{1}{r}\right)}
\end{align*}
$$

the integrand in (25)

$$
\begin{equation*}
\frac{1}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}\right\}}=\frac{1}{2 r \sqrt{\frac{1+r}{2}}} \tag{62}
\end{equation*}
$$

Hence,

$$
\begin{align*}
J & =4 j \int_{0}^{\infty} \frac{d t}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{(1+2 j t)^{\frac{1}{2}}+(1-2 j t)^{\frac{1}{2}}\right\}} \\
& =2 \sqrt{2} j \int_{0}^{\infty} \frac{d t}{\left(1+4 t^{2}\right)^{\frac{1}{2}}\left\{1+\left(1+4 t^{2}\right)^{\frac{1}{2}}\right\}^{\frac{1}{2}}} .
\end{align*}
$$

Substituting $t=\frac{\tan \phi}{2}$ in the above,

$$
\begin{equation*}
J=\sqrt{2} j \int_{0}^{\frac{\pi}{2}} \frac{\sec \phi}{\sqrt{1+\sec \phi}} d \phi \tag{64}
\end{equation*}
$$

Let $\sqrt{1+\sec \phi}=\sqrt{2} \sec \psi$. Then

$$
\begin{equation*}
\frac{\sec \phi}{\sqrt{1+\sec \phi}} d \phi \quad=\quad \sqrt{2} d \psi \tag{65}
\end{equation*}
$$

The integral in (64) now becomes

$$
\begin{align*}
J & =2 j \int_{0}^{\frac{\pi}{2}} d \psi  \tag{66}\\
& =j \pi .
\end{align*}
$$

## REFERENCES

[1] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels. 2nd ed. Hoboken, NJ USA : John Wiley and Sons, 2005.
[2] S. Verdu, Multiuser Detection, Cambridge University Press : Cambridge, UK, 1998.
[3] W. C. Lindsey, "Error probabilites for Rician fading multichannel reception of binary and N -ary signals," IEEE Trans. Inform. Theory, vol. 10, no. 4, pp. 339-350, October 1964.
[4] J. W. Craig, "A new, simple and exact result for calculating the probability of error for two-dimensional signal constellations," IEEE MILCOM 91 Conf. Rec., Boston, MA, pp. 25.5.125.5.5.
[5] J. G. Proakis, Digital Communications, 3rd ed. New York, NY: McGrawHill, 1995.
[6] J. Gil-Pelaez, "Note on the inversion theorem," Biometrika, vol. 38, 1951, pp. 481-482.
[7] G. Taricco and E. Biglieri, "Exact pairwise error probability of spacetime codes," IEEE Trans. Inform. Theory, vol. 48, no. 2, pp. 510-513, February 2002.
[8] E. Kreyszig, Advanced engineering mathematics, 5th ed. : John Wiley and Sons, 1983.
[9] N. Saran, S. D. Sharma and T. N. Trivedi, Special Functions with Applications, 3rd ed. Meerut: Pragati Prakashan, 1989.


[^0]:    ${ }^{2}$ Lindsey, in [3], using a fundamentally different approach, has obtained a closed form expression in a completely different form.

