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Abstract—In stochasticthr esholding, the thr eshold for
quantization of a signal is randomized. An estimator
basedon quantized signal data can be optimized thr ough
stochasticthr esholding By controlling certain parameters
of the probability distribution function of the threshold,
we can achieve a gain in Fisher information, a measure of
efficacy of any unbiased estimator. Thus any conceiable
estimator based on quantized signal will perform better
than an estimator operating on original signal provided
the stochastic thr esholding schemeis followed. Both bi-
level and tri-le vel quantization casesare discussed.The
optimization is illustrated by a Maximum Lik elihood
Estimator to estimatethe amplitude of a sinusoiddrowned
in heavy noise. Stochastic thr esholding can also be used
to maximize output SNR. This is illustrated by applying
3-level quantization with stochastic thresholding on a
digital image. Contrary to intuition, it is seenthat loss
of information through quantization can be minimized
via randomizing the thr eshold of comparison.

Index Terms— Estimator Optimization, Fisher Infor-
mation, Stochasticthr esholding, Maximim Lik elihood Es-
timation, Non-linear Signal Processing

I. INTRODUCTION

Quantizationis an essentialstep in digital signal
processing.lssueslike storage, noise immunity and
easein communicationdemanda small number of
gquantization levels, often two or three. Hence, the
quantizerhasto be designedin such a way that the
outputsignalpreseresasmuchinformationaspossible.
Recentapproachedo this end have employed thresh-
old variation and/or StochasticResonanceg8] where
FisherInformation hasbeenthe criterion for quantizer
optimization. However, thesemethodsdid not yield a
gainin Fisherinformationfor Gaussiamoisewhich is

the mostcommontype of noiseencounteredn nature.
In this paperwe shov how StochasticThresholding
achieves a Fisher Information gain greaterthan unity

for Gaussiamoise.We study both bi-level andtri-level

guantization.To illustrate the method we optimize a
Maximum Likelihood estimator We studyin detail the
performanceof the ML estimator— how it dependon

the parametefor optimizationandits robustnessagainst
noiseafter optimization.

When quantizationbecomesecessarywe can mini-
mize the lossof informationthroughStochasticThresh-
olding. This is illustratedby quantizinga digital image
with intensitiesin therange0 to 255to justthreelevels.
We shaw the existenceof an optimal thresholddistrib-
ution belongingto the Rayleighfamily that maximizes
output SNR.

The main contritutions of the paperare asfollows:

« We proposea stochasticthresholdingschemefor
guantizationand shov how it achieves a Fisher
Informationgain greaterthan unity whenthe input
noiseis Gaussian.

« We devise a Maximum Likelihood estimatorand
optimize it by adjustingthe parameterassociated
with the threshold distribution. We evaluate its
performanceor an extensive low SNR range.

« We shov mathematically and graphically via
a digital image how output SNR varies non-
monotonicallywith the thresholddistribution.

The paperis organized as follows: Section Il in-
troducesthe estimationproblem at hand. Section lll
describeghe stochasticdhresholdingschemeproposed.
Section IV shows how Fisher Information maximiza-
tion is possiblevia bi-level and tri-level quatization.
SectionV demonstrateshe conceptsdicussedin Sec-



Two-level Quantizer
.

- - - Output Fisher Information
— Fisher Information gain

o o o IR
EN )} © [ [N}
: ‘ : . :

Fisher Information: Output and gain

o
N}
:

Rayleigh parameter (s ) ———>

Fig. 1. The graph correspondsto the two-level quantizer It

shaws the variation of output Fisher Information .J,... and Fisher
Informationgain Jgq:» With the Rayleighparametefs’. The gainis

seento be greaterthanunity. Thusthe estimatorbasedon quantized
datais expectedto perform better

tion IV by optimizingthe Maximum Lik elihoodestima-
tor whoseperformanceafter optimizationis studiedex-
tensvely. Concludingremarksaregivenin SectionVII.

1. PROBLEM DEFINITION

We have a signal s(n) corruptedby noisen(n). The
noisecorruptedsequencec(n) is given by:

(1)

n(n) is an independentand identically distributed
zero-meamoise sequencewith a gaussianprobability
distribution function.

z(n) = s(n) +n(n)

1 u?
f’?(u) = W ea?p(_ﬁ) (2)

The aim is to designan optimal estimatorto estimate

a parametera’ associatedwith the signal s(n) after

quatization. ‘a’ can be such features as amplitude,

frequeng, etc.

[I1. STOCHASTIC THRESHOLDING

The thresholdfor quantization(v) is chosento be a
randomvariable.It follows a RayleighDistribution with
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Fig. 2.  This graph correspondgo the 3-level quantizer Jyqin
is againgreaterthan unity. Thus the estimatorbasedon randomly
thresholdedsignal will perform better

probability distribution function given by:
2

u .

zp(—55) if u>0

otherwise

fy(u) = ?6

- 0 3)

Thus the threshold~ becomesa stochasticsequence
v(n) with mean,/Z s and variance /5% s%. The
two-level quantizeris definedas:

it s(n)m(n) > ~(n)
it s(n)#(n) < (n) (4)

The three-level quantizeris definedas:

y(n) = +1
- 1

yin) = +1 if s(n)n(n) > ~(n)
= -1 if s()m(n) < —y(n)
=0 otherwise 5)
V. FISHER INFORMATION MAXIMIZATION

The Fisher Information containedin a randomvari-
able X with probability distribution f, (which belongs
to the family of distributions {fy : 6 ¢ ©} ) is defined

by:

2
7(00) = Ea, (5giof (X160)) ©



To show the existence of an optimal 's’ for estimation
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Fig. 3. This graphshaws the variation of normalizedestimation
errorwith therayleighparameterlt shavs thatan optimal‘s’ exists
wherethe error hits a bottom after which it risesagain.

It will be shawvn that the Fisher Information of the
guantizedoutput can be maximized using Stochastic
Thresholdingoy varyingthe parametets’ of the thresh-
old p.d.f.which hasthe effect of simultaneoulsyarying
themeanandvarianceof thethreshold We shalldiscuss
both two level andthreelevel quantizer

A. Bi-level Quantization

In this case we take the input signalto be a constant
d.c. s(n) = a corruptedwith noise.Let ¢ representhe
probability thaty(n) = 1. Thus1 — ¢ is the probability
that y(n) = —1. Hence,the FisherInformation of the
guantizedoutput J,,; is given by:

1 0 2
Jout Z:; , P?"i{y — Z} (%PT{y = Z})

21 1
= (5) (34 14) @
Now, ¢ canbe found as:
g = Priy=+1}
= Pr{s(n)+n(n) = y(n)}
= Pr{n(n) —~(n) = —a} (8)

To determinethe probability distribution function of
the new randomvariablea = n — ~, let us defineg =
n+~. Thus,n = %22 and~ = 252, The Jacobian
J(a, B) is given by:

2(s2+02)32 7

Estimation error vs SNR at optimal 's’
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Fig. 4. Thisgraphshavsthevariationof percentagestimationerror
with input snt The Rayleighparametethasbeensetto the optimal
value. As snrincreaseghe error dropssharply Even at —50d B it
is seenthat the erroris as small as 5% which shavs that the ML
estimatorhasvery good performance.
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Let fo5(a, 3) denotethe joint p.d.f. of oo andg. It is
given by:

faﬁ(a,ﬂ) = fﬂ{n(aaﬂ)}f’y{’}/(aaB)}’J((%ﬂﬂ (10)

Since is always greaterthan zero, f,3(a, 5) = 0 if

8 < a. Otherwise,
f—a (@+p8)? (B—a)
faﬁ(ayﬁ):m erp [—{ P + 352 H

fa(a) canbefound by integration f,3(«, 3) overthe
rangeof g:

fal) = /:Ofaﬁ(a,ﬁ)dﬁ

N o a2

= Ve '\ )
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Fig. 5. This graphshavs the variation of the outputsnr with the
rayleigh parameter The variation is non-monotonicwhich shavs
that the loss of information due to quantizationcan be minimized
by properchoiceof ‘s’.

The cumulative distribution function of a can be
obtainedas:

= /a fa(u)du
1 s a?
= (1+erf(\/’o_)) \/mexp(_m)
as
l—erf————+— 12
The probability that y = 1, i.e. ¢, is seento equal
F,(—a). Also,
dq /
5y = Fa(-0) (13)
Hence,
_ fa(=a)
Tt = R o)l - Fal-a)] 4
For the input signal, J;,, is given by [8]:
1
Jin = = (15)
The FisherInformationgain is simply:
Jou
Jgain = J—nt (16)
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Fig. 6. This graph shavs the variation of the snr gain with the

rayleighparameterfThoughthe dependancis non-monotonica gain
greaterthan unity is not achievable.

Figure 1 shows the variation of J,,; and Jy,i, with
the Rayleigh parameters’. We seethat a gain greater
thanunity hasbeenachieved. Thusthe estimatorbased
on quantizeddata operatingat optimal ‘s’ can be ex-
pectedto performbetter

B. Tri-level Quantization

In this case,we take the signal s(n) as a sinusoid
a cos(2m fn) which is corruptedby zero-mearadditive
white Gaussiannoise sequencen(n). The quantized
signalis given by:

y(n) = +1 if s(n)+(n) = ~(n)
= -1 it s(n)+(n) < —(n)
=0 otherwise a7
The probability distribution function of 5 can be
obtainedas:
B
| tasta 18)
It can be easily proved that f3(5) = fo(—8) from

which we obtain

o 32
10) = s () +



—B3° Bs
6$p(2(02+82)){1 %rﬂm)}
(19)

Using the property f3(5) = fo(—03), F3(3) canbe
obtainedas:

Gs
2(s24-02)3/2

B
BB = [ s
= 1-Fu(-p) (20)
The Fisher Information for the three-level quantizer
can be obtainedas:
1 o) 2
o = pry=iy a0 =) 4
1 o) 2
Pty o7 (P =0) +

TR G —1})2

A N G N O s
N [1—FJ+FJ—|—FOT—1+1—FOT
] cos®(2m fn) (21)

Figure 2 shows the variation of J,,; and Jy,, with
the Rayleigh parameters’. Again we seethat a gain
greaterthan unity is possibleby choosing's’ properly
Hence,the estimationthrough3-level quantizeddatais
expectedo give betterresultsthanthe unquantizediata.

V. MAXIMUM LIKELIHOOD ESTIMATOR

Herewe optimizethe ML estimatorfor the amplitude
a. Let m be the numberof ‘1's and n the numberof
‘ — 1’sin the outputsequencey(n). The log likelihood
function is given by,

f(Y]a)=mlog<Pr{y = 1}>+ nlog<Pr{y = —1}>+
(N —m —n)log < Pr{y =0} >
=mlog(l— < F,(—acos2mwfn) >) +
nlog(< Fg(—acos2rfn) >)+ (N —m —
n)log(< Fy(—acos2mfn) — Fg(—acos2mfn) >)

Here <> denotesaverage over time. The time-
averagedprobability < F,,(—acos 27 fn) > for thecase
where the input snris very low i.e. & < 0.1, canbe
found as:

< Fy(—acos2mfn) >

1 s a®
A= 1- 22
2 * 2\/$2+02( 4(82+02)) (22)

Also,

< Fg(—acos2mfn) > = <1—F,(acos2mfn)>
= 1- < Fy(—acos2nfn) >

Setting 9L = 0, we get

m—+n
1— < Fo(— 2 = 23
< Fy(—acos2mfn) > 5N (23)
from which the amplitudecan be obtainedas:
8(s2 +02)3/2 m+n s
= 24
“ \l S 2N +2 s2+02—%]( )

Figure 3 shows how the estimationerror varieswith
s. Since the sole purposeof this graphis to show
the existenceof an optimal ‘s’ where the error gets
minimized,we have normalizedthe error axis. Figure 4
shaws the performanceof the ML estimatorat optimal
‘s’ for varying snt. We seethat as the snr increases,
the error decreasesis expected.Also the performance
of the estimatoris very goodsinceeven at —50dB the
erroris only 5%. A logical questionis how to setthe
‘s’ parametewhenthe amplitudeis unknown (which is
why we are using the estimatorin the first place). For
thiswe referthereadeito theadaptve ML schemegiven
in [8] which canbe easily adoptedfor this situation.

VI. OUTPUT SNR IMPROVEMENT

The SNR of the quantizedsignal also varies non-
monotonically with ‘s’. The output SNR is given by

[3]:

SN Ryy = < E?[y(n)] > — < E[y(n)] >*

<oi(n) >

(25)
where

ay(n) = Ely?(n)] — E2[y(n)] (26)

E denotesthe expectationoperatorand <> is the
time-averageoperator We now derive a simple expres-
sionfor SN R,,; wheninput SNRiis low i.e. 4 < 0.1.
We have,



Fig. 7. The Lena image quantizedinto three levels with s=1.
Clearly, the informationlossis considerable.

Fig. 9. TheLlenaimagequantizednto threelevelswith s=21.The
outputsnrreachesa maximum.

Fig. 8. TheLenaimagequantizednto threelevels with s=10.The
outputsnris seento improve.

Ely(n)] = 1—F,(—acos2nfn)—Fg(—acos2nmfn)
= 1—-F,(—acos2mfn)—{1—
Fy(acos2mfn)}
~ \/gﬁ cos2mfn (27)
ai(n) = 1-F,(—acos2nfn)+Fg(—acos2mfn)—
E?[y(n)]

Fig. 10.
The outputsnr deterioratesagain.

The Lenaimage quantizedinto three levels with s=50.

= 1—F,(—acos2mfn)+1—F,(acos2mfn)

~E?[y(n)]
So,
<ol(n)> =~ 1—\/% (28)
From Equation(25),
SN Ryt = o (29)

(52 + 02)2 [1 — ﬁ}



Figure 5 shows the non-monotonicoutput SNR vari-
ation with the Rayleigh parameter An expressionfor
SN Rgyqin canbe found as:

SN Rout
SNR;,
2
- s2 2 S (30)
w1+ G - ]
Figure 6 shows the variation of SNR gain with the
Rayleighparameters’. It shows that at an optimal ‘s’
thelossof informationdueto quantizatioris minimum.
Thereis no imrovementin SNR for Gaussiamoise. It
canbe provedthatsnrgain canotgreaterthanunity. We

proceedby the methodof contradiction.
SN Rgain

SNRyuin =

> 1
2

T+ G 1 -
:w(1+(§)2)2[7r(1+( 2)—4]+4 < 0(31)

S
g

= > 1

which is clearly impossibleas the minimum value
of the function on right is positive. Hence,SNR gain
cannot be greater than 1. However, in applications
like datacompressiorwhere quatizationis neccessary
StochasticThresholdingprovides a meansto minimize
lossof information. To visualizethis cocepttake a look
at the sequenceof quantizedimagesin Figures7, 8,
9 and 10. Only threelevels of quantizationhave been
used.We can clearly seethat thereis an optimal ‘s’
at which maximum transmissionof information takes
place.

VIlI. CONCLUSION

In this paperwe have shovn how StochasticThresh-
olding achievesa gainin FisherInformationwith both
bi-level and tri-level quantization.The ML estimator
basedon the data quantizedby random thresholding
is seento have excellentperformancedown to —50dB
provided after optimization. We have showvn the exis-
tence of an optimal ‘s’ associatedwith the Rayleigh
distributed thresholdwhere the error hits a minimum.
The output SNR also hasbeenshaown to follow a non-
monotonicrelationshipwith ‘s’. This givesusa method
to minimize the lossof informationdueto quantization.
This conceptwas illustrated by quantizing a digital
image with intensitiesvarying in the range0 to 255
to just threelevels. However, SNR gain could not be

achieved greaterthan unity wheninput is corruptedby
gaussiannoise. It remainsto be investigatedwhether
SNRgaingreaterthanunity is possiblefor non-gaussian
noise.
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