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Abstract— In stochasticthr esholding, the thr eshold for
quantization of a signal is randomized. An estimator
basedon quantized signal data can be optimized thr ough
stochasticthr esholding. By controlling certain parameters
of the probability distrib ution function of the thr eshold,
we can achieve a gain in Fisher information, a measure of
efficacy of any unbiased estimator. Thus any conceivable
estimator based on quantized signal will perform better
than an estimator operating on original signal provided
the stochastic thr esholding schemeis followed. Both bi-
level and tri-le vel quantization casesare discussed.The
optimization is illustrated by a Maximum Lik elihood
Estimator to estimatethe amplitude of a sinusoiddrowned
in heavy noise. Stochastic thr esholding can also be used
to maximize output SNR. This is illustrated by applying
3-level quantization with stochastic thr esholding on a
digital image. Contrary to intuition, it is seen that loss
of information thr ough quantization can be minimized
via randomizing the thr esholdof comparison.

Index Terms— Estimator Optimization, Fisher Inf or-
mation, Stochasticthr esholding,Maximim Lik elihood Es-
timation, Non-linear Signal Processing.

I . INTRODUCTION

Quantization is an essentialstep in digital signal
processing.Issues like storage,noise immunity and
ease in communicationdemand a small number of
quantization levels, often two or three. Hence, the
quantizerhas to be designedin such a way that the
outputsignalpreservesasmuchinformationaspossible.
Recentapproachesto this end have employed thresh-
old variation and/or StochasticResonance[8] where
FisherInformation hasbeenthe criterion for quantizer
optimization.However, thesemethodsdid not yield a
gain in Fisherinformation for Gaussiannoisewhich is

the mostcommontype of noiseencounteredin nature.
In this paper we show how StochasticThresholding
achieves a Fisher Information gain greaterthan unity
for Gaussiannoise.We studyboth bi-level andtri-level
quantization.To illustrate the method we optimize a
Maximum Likelihoodestimator. We study in detail the
performanceof the ML estimator— how it dependson
theparameterfor optimizationandits robustnessagainst
noiseafter optimization.

Whenquantizationbecomesnecessary, we canmini-
mize the lossof informationthroughStochasticThresh-
olding. This is illustratedby quantizinga digital image
with intensitiesin therange0 to 255to just threelevels.
We show the existenceof an optimal thresholddistrib-
ution belongingto the Rayleighfamily that maximizes
outputSNR.

The main contributionsof the paperareas follows:

• We proposea stochasticthresholdingschemefor
quantizationand show how it achieves a Fisher
Informationgaingreaterthanunity whenthe input
noiseis Gaussian.

• We devise a Maximum Likelihood estimatorand
optimize it by adjustingthe parameterassociated
with the threshold distribution. We evaluate its
performancefor an extensive low SNR range.

• We show mathematically and graphically via
a digital image how output SNR varies non-
monotonicallywith the thresholddistribution.

The paper is organized as follows: Section II in-
troducesthe estimationproblem at hand. Section III
describesthe stochasticthresholdingschemeproposed.
Section IV shows how Fisher Information maximiza-
tion is possiblevia bi-level and tri-level quatization.
SectionV demonstratesthe conceptsdicussedin Sec-
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Fig. 1. The graph correspondsto the two-level quantizer. It
shows the variation of output Fisher Information Jout and Fisher
InformationgainJgain with theRayleighparameter‘s’. Thegain is
seento begreaterthanunity. Thustheestimatorbasedon quantized
datais expectedto performbetter.

tion IV by optimizingtheMaximumLikelihoodestima-
tor whoseperformanceafter optimizationis studiedex-
tensively. Concludingremarksaregiven in SectionVII.

I I . PROBLEM DEFINITION

We have a signals(n) corruptedby noiseη(n). The
noisecorruptedsequencex(n) is given by:

x(n) = s(n) + η(n) (1)

η(n) is an independentand identically distributed
zero-meannoise sequencewith a gaussianprobability
distribution function.

fη(u) =
1√

2πσ2
exp(− u2

2σ2
) (2)

The aim is to designanoptimal estimatorto estimate
a parameter‘a’ associatedwith the signal s(n) after
quatization. ‘a’ can be such features as amplitude,
frequency, etc.

I I I . STOCHASTIC THRESHOLDING

The thresholdfor quantization(γ) is chosento be a
randomvariable.It follows a RayleighDistribution with

0 1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6
Three−level Quantizer

Rayleigh parameter ( s ) −−−>

F
is

he
r 

In
fo

rm
at

io
n:

 O
ut

pu
t a

nd
 G

ai
n

Output Fisher Information
Fisher Information Gain

Fig. 2. This graph correspondsto the 3-level quantizer. Jgain

is againgreaterthan unity. Thus the estimatorbasedon randomly
thresholdedsignalwill performbetter.

probability distribution function given by:

fγ(u) =
u

s2
exp(− u2

2s2
) if u ≥ 0

= 0 otherwise (3)

Thus the thresholdγ becomesa stochasticsequence
γ(n) with mean

√
π
2 s and variance

√
4−π

2 s2. The
two-level quantizeris definedas:

y(n) = +1 if s(n)+η(n) ≥ γ(n)

= −1 if s(n)+η(n) < γ(n) (4)

The three-level quantizeris definedas:

y(n) = +1 if s(n)+η(n) ≥ γ(n)
= −1 if s(n)+η(n) ≤ −γ(n)

= 0 otherwise (5)

IV. FISHER INFORMATION MAXIMIZATION

The Fisher Information containedin a randomvari-
ableX with probabilitydistribution fθ0 (which belongs
to the family of distributions {fθ : θ ε Θ} ) is defined
by:

J(θ0) = Eθ0

(
∂

∂θ
logf(X|θ0)

)2

(6)
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Fig. 3. This graphshows the variation of normalizedestimation
errorwith the rayleighparameter. It shows thatan optimal ‘s’ exists
wherethe error hits a bottomafter which it risesagain.

It will be shown that the Fisher Information of the
quantizedoutput can be maximized using Stochastic
Thresholdingby varyingtheparameter‘s’ of thethresh-
old p.d.f.which hastheeffect of simultaneoulsyvarying
themeanandvarianceof thethreshold.We shalldiscuss
both two level andthreelevel quantizer.

A. Bi-level Quantization

In this case,we take the input signalto be a constant
d.c. s(n) = a corruptedwith noise.Let q representthe
probability that y(n) = 1. Thus1− q is the probability
that y(n) = −1. Hence,the Fisher Information of the
quantizedoutputJout is given by:

Jout =
∑

z=−1,1

1
Pr{y = z}

(
∂

∂a
Pr{y = z}

)2

=
(

∂q

∂a

)2 (1
q

+
1

1− q

)
(7)

Now, q canbe found as:

q = Pr{y = +1}
= Pr{s(n) + η(n) ≥ γ(n)}
= Pr{η(n)− γ(n) ≥ −a} (8)

To determinethe probability distribution function of
the new randomvariableα = η − γ, let us defineβ =
η + γ. Thus, η = α+β

2 and γ = β−α
2 . The Jacobian

J(α, β) is given by:
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Fig. 4. Thisgraphshows thevariationof percentageestimationerror
with input snr. The Rayleighparameterhasbeenset to the optimal
value. As snr increasesthe error dropssharply. Even at −50dB it
is seenthat the error is as small as 5% which shows that the ML
estimatorhasvery goodperformance.

J(α, β) =

∣∣∣∣∣
∂η
∂α

∂η
∂β

∂γ
∂α

∂γ
∂β

∣∣∣∣∣
=

1
2

(9)

Let fαβ(α, β) denotethe joint p.d.f. of α andβ. It is
given by:

fαβ(α, β) = fη{η(α, β)}fγ{γ(α, β)}|J(α, β)| (10)

Sinceγ is always greaterthan zero, fαβ(α, β) = 0 if
β < α. Otherwise,

fαβ(α, β)=
β − α

4s2
√

2πσ2
exp

[
−
{
(α + β)2

8σ2
+

(β − α)2

8s2

}]
fα(α) canbe foundby integrationfαβ(α, β) over the

rangeof β:

fα(α) =
∫ ∞

α
fαβ(α, β)dβ

=
σ√

2π(s2 + σ2)
exp

(
− α2

2σ2

)
−

αs

2(s2+σ2)3/2
exp

(
−α2

2(σ2+s2)

)
erfc

(
αs

σ
√

2(s2+σ2)

)
(11)
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Fig. 5. This graphshows the variation of the output snr with the
rayleigh parameter. The variation is non-monotonicwhich shows
that the loss of information due to quantizationcan be minimized
by properchoiceof ‘s’.

The cumulative distribution function of α can be
obtainedas:

Fα(α) =
∫ α

−∞
fα(u)du

=
1
2
(1+erf(

α√
2σ

))+
s

2
√

s2+σ2
exp(− α2

2(s2+σ2)
)

(1− erf
αs

σ
√

2(s2 + σ2)
) (12)

The probability that y = 1, i.e. q, is seento equal
Fα(−a). Also,

∂q

∂a
= −F ′

α(−a) (13)

Hence,

Jout =
f2

α(−a)
Fα(−a)[1− Fα(−a)]

(14)

For the input signal,Jin is given by [8]:

Jin =
1
σ4

(15)

The FisherInformationgain is simply:

Jgain =
Jout

Jin
(16)
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Fig. 6. This graph shows the variation of the snr gain with the
rayleighparameter. Thoughthedependanceis non-monotonic,again
greaterthanunity is not achievable.

Figure 1 shows the variation of Jout and Jgain with
the Rayleighparameter‘s’. We seethat a gain greater
thanunity hasbeenachieved.Thusthe estimatorbased
on quantizeddata operatingat optimal ‘s’ can be ex-
pectedto performbetter.

B. Tri-level Quantization

In this case,we take the signal s(n) as a sinusoid
a cos(2πfn) which is corruptedby zero-meanadditive
white Gaussiannoise sequenceη(n). The quantized
signal is given by:

y(n) = +1 if s(n)+η(n) ≥ γ(n)

= −1 if s(n)+η(n) ≤ −γ(n)

= 0 otherwise (17)

The probability distribution function of β can be
obtainedas:

fβ(β) =
∫ β

−∞
fαβ(α, β)dα (18)

It can be easily proved that fβ(β) = fα(−β) from
which we obtain

fβ(β) =
σ√

2π(s2 + σ2)
exp

(
− β2

2σ2

)
+



βs

2(s2+σ2)3/2
exp(

−β2

2(σ2+s2)
){1 +erf(

βs

σ
√

2(s2+σ2)
)}

(19)

Using the propertyfβ(β) = fα(−β), Fβ(β) can be
obtainedas:

Fβ(β) =
∫ β

−∞
fβdβ

= 1− Fα(−β) (20)

The Fisher Information for the three-level quantizer
canbe obtainedas:

Jout =
1

Pr{y = 1}
(

∂

∂a
Pr{y = 1}

)2

+

1
Pr{y = 0}

(
∂

∂a
Pr{y = 0}

)2

+

1
Pr{y = −1}

(
∂

∂a
Pr{y = −1}

)2

= [
(f+

α )2

1− F+
α

+
(−f+

α + f−α )2

F+
α + F−

α − 1
+

(f−α )2

1− F−
α

] cos2(2πfn) (21)

Figure 2 shows the variation of Jout and Jgain with
the Rayleigh parameter‘s’. Again we seethat a gain
greaterthanunity is possibleby choosing‘s’ properly.
Hence,the estimationthrough3-level quantizeddatais
expectedto givebetterresultsthantheunquantizeddata.

V. MAXIMUM LIKELIHOOD ESTIMATOR

Herewe optimizetheML estimatorfor theamplitude
a. Let m be the numberof ‘1’s and n the numberof
‘− 1’s in the outputsequencey(n). The log likelihood
function is given by,

f(Y |a)=m log<Pr{y = 1}>+ n log<Pr{y = −1}>+
(N −m− n) log < Pr{y = 0} >

= m log(1− < Fα(−a cos 2πfn) >) +

n log(< Fβ(−a cos 2πfn) >) + (N −m−
n) log(< Fα(−a cos 2πfn)− Fβ(−a cos 2πfn) >)

Here <> denotes average over time. The time-
averagedprobability< Fα(−a cos 2πfn) > for thecase
where the input snr is very low i.e. a

σ < 0.1, can be
found as:

< Fα(−a cos 2πfn) >

≈ 1
2

+
s

2
√

s2 + σ2
(1− a2

4(s2 + σ2)
) (22)

Also,

< Fβ(−a cos 2πfn) > = < 1− Fα(a cos 2πfn) >

= 1− < Fα(−a cos 2πfn) >

Setting ∂f
∂a = 0, we get

1− < Fα(−a cos 2πfn) >=
m + n

2N
(23)

from which the amplitudecanbe obtainedas:

a =

√√√√8(s2 + σ2)3/2

s
[
m + n

2N
+

s

2
√

s2 + σ2 − 1
2

] (24)

Figure 3 shows how the estimationerror varieswith
s. Since the sole purposeof this graph is to show
the existenceof an optimal ‘s’ where the error gets
minimized,we have normalizedthe erroraxis.Figure4
shows the performanceof the ML estimatorat optimal
‘s’ for varying snr. We see that as the snr increases,
the error decreasesas expected.Also the performance
of the estimatoris very goodsinceeven at−50dB the
error is only 5%. A logical questionis how to set the
‘s’ parameterwhentheamplitudeis unknown (which is
why we are using the estimatorin the first place).For
thiswereferthereaderto theadaptiveML schemegiven
in [8] which canbe easilyadoptedfor this situation.

VI. OUTPUT SNR IMPROVEMENT

The SNR of the quantizedsignal also varies non-
monotonically with ‘s’. The output SNR is given by
[3]:

SNRout =
< E2[y(n)] > − < E[y(n)] >2

< σ2
y(n) >

(25)

where

σ2
y(n) = E[y2(n)]− E2[y(n)] (26)

E denotesthe expectationoperatorand <> is the
time-averageoperator. We now derive a simpleexpres-
sion for SNRout when input SNR is low i.e. A

σ < 0.1.
We have,



Fig. 7. The Lena image quantizedinto three levels with s=1.
Clearly, the information loss is considerable.

Fig. 8. The Lenaimagequantizedinto threelevels with s=10.The
outputsnr is seento improve.

E[y(n)] = 1−Fα(−a cos 2πfn)−Fβ(−a cos 2πfn)

= 1−Fα(−a cos 2πfn)−{1−
Fα(a cos 2πfn)}

≈
√

2
π

aσ

s2 + σ2
cos 2πfn (27)

σ2
y(n) = 1−Fα(−a cos 2πfn)+Fβ(−a cos 2πfn)−

E2[y(n)]

Fig. 9. The Lenaimagequantizedinto threelevels with s=21.The
outputsnr reachesa maximum.

Fig. 10. The Lena image quantizedinto three levels with s=50.
The outputsnr deterioratesagain.

= 1−Fα(−a cos 2πfn)+1−Fα(a cos 2πfn)

−E2[y(n)]

So,

< σ2
y(n) > ≈ 1− s√

s2 + σ2
(28)

From Equation(25),

SNRout =
a2σ2

π(s2 + σ2)2
[
1− s√

s2+σ2

] (29)



Figure5 shows the non-monotonicoutputSNR vari-
ation with the Rayleigh parameter. An expressionfor
SNRgain canbe found as:

SNRgain =
SNRout

SNRin

=
2

π
[
1 + ( s

σ
2
]2 [

1− s√
s2+σ2

] (30)

Figure 6 shows the variation of SNR gain with the
Rayleighparameter‘s’. It shows that at an optimal ‘s’
the lossof informationdueto quantizationis minimum.
Thereis no imrovementin SNR for Gaussiannoise.It
canbeprovedthatsnrgaincanotgreaterthanunity. We
proceedby the methodof contradiction.

SNRgain > 1

⇒ 2

π
[
1 + ( s

σ )2
]2 [1− s√

s2+σ2

] > 1

⇒ π(1 + (
s

σ
)2)2[π(1 + (

s

σ
)2)− 4] + 4 < 0 (31)

which is clearly impossibleas the minimum value
of the function on right is positive. Hence,SNR gain
cannot be greater than 1. However, in applications
like datacompressionwherequatizationis neccessary,
StochasticThresholdingprovides a meansto minimize
lossof information.To visualizethis cocept,take a look
at the sequenceof quantizedimagesin Figures7, 8,
9 and 10. Only three levels of quantizationhave been
used.We can clearly see that there is an optimal ‘s’
at which maximum transmissionof information takes
place.

VII . CONCLUSION

In this paperwe have shown how StochasticThresh-
olding achievesa gain in FisherInformationwith both
bi-level and tri-level quantization.The ML estimator
basedon the data quantizedby random thresholding
is seento have excellentperformancedown to −50dB
provided after optimization.We have shown the exis-
tence of an optimal ‘s’ associatedwith the Rayleigh
distributed thresholdwhere the error hits a minimum.
The outputSNR alsohasbeenshown to follow a non-
monotonicrelationshipwith ‘s’. This givesusa method
to minimize the lossof informationdueto quantization.
This concept was illustrated by quantizing a digital
image with intensitiesvarying in the range 0 to 255
to just three levels. However, SNR gain could not be

achieved greaterthanunity when input is corruptedby
gaussiannoise. It remainsto be investigatedwhether
SNRgaingreaterthanunity is possiblefor non-gaussian
noise.
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