
DynCoDe:Dynamic Content Delivery for Internet Services
Kalyan Pucha1, Himabindu Pucha2 and Saumitra M. Das3

1Dept of IT, PVPP CoE, University of Mumbai, India1

2,3School of ECE, Purdue University, West Lafayette, USA2,3

Email: {kpucha@yahoo.com1, hpucha@purdue.edu2, smdas@purdue.edu3}

Abstract

Web services on the Internet are increasingly relying on
personalized content that is dynamically generated by
server application code and customized for users.
Delivering such personalized content increases
computational load on servers and does not fit into the
current Internet web caching model leading to an increase
in user latency and bandwidth consumption. In this paper,
we propose DynCoDe, a novel architecture for efficient
delivery of personalized web services that integrates the
distribution, caching and generation of personalized
content. In the DynCoDe architecture, resource intensive
processes for content generation and reusable content
components are pushed to the network edges increasing
server scalability and content availability while reducing
user latency and backbone Internet traffic. We evaluate
DynCoDe under real world network conditions and show
significant improvements in bandwidth consumption, user
latency and server scalability.

1. Introduction

The growth of the World Wide Web has resulted in
innovation in the content served to the users. Web content
can be broadly classified into static content and dynamic
content. Static content refers to web content that is non-
volatile and served to requesting users without changes.
Dynamic content refers to web content that is generated on
demand and may have different attributes depending on the
requesting user. In the past, web traffic has been
predominantly static in nature. Several studies have been
proposed to serve such static content to users in an efficient
manner. Web caching is one such widely studied solution
useful for reducing server overloading, network congestion
and user latency by pushing content close to the edge [1].

Current web traffic has an increasing amount of dynamic
content due to the growing popularity of personalized web
portals and services. Personalized web portals allow users
to set up user profiles subscribing to content items of their
interest to be presented in the specific layout that they
would like. Additionally, the advertisements on these web
pages are very specific and tailored based on the user

profiles. This personalized content makes up a significant
fraction of the total dynamic content. Such content by its
very nature is un-cacheable. User requests for personalized
pages typically bypass web caches and require the server to
execute application code for every user request placing a
large computational burden on the server. Additionally, the
average size of a personalized web page is much larger
than the average size of an ordinary web page and thus
consumes more network bandwidth. Thus, dynamic content
delivery places computational burdens on the servers,
increases network congestion and increases user latency. It
has also been shown that Content Delivery Networks like
Akamai do not perform as well for dynamic content [8].
Thus, serving such dynamic content efficiently is an
important research problem.

In this paper, we propose and evaluate DynCoDe1, a
generic framework for delivering dynamic content
efficiently and transparently to end users. DynCoDe
implements caching and generation of certain coarse
grained dynamic content in a distributed manner on active
proxies in the Internet. These proxies reside in the edge
networks closer to the user, thus reducing the burden on the
web server, increasing availability, saving valuable
bandwidth and reducing user latency. Such active proxies
could potentially be deployed by content providers (like
CNN) or by Content Distribution Networks (like Akamai).

2. DynCoDe Architecture

As mentioned earlier, personalized pages such as (My
Yahoo) are generated at web servers by content generating
applications (CGI scripts, C programs, database software).
These applications use methods such as cookies to uniquely
identify a user, locate the user’s profile and then
dynamically generate the web content tailored to that user.
A key observation here is that 60% of the components in
such dynamically generated content have been shown to be
reusable [2] and thus cacheable. DynCoDe proposes to
push such reusable components of dynamic content to
active proxies close to the user. However, this only reduces
the network congestion and user latency but does not

1 A poster describing DynCoDe was accepted at the 12th

International WWW Conference, Hungary, May 2003

 1

improve the scalability of the server as the server is still
responsible for executing application code on each user
request. Thus, DynCoDe also proposes that the applications
used to generate the dynamic content be pushed to these
active proxies. In order to support transparent pushing of
content generation code to proxies, DynCoDe also provides
an execution environment whereby on a user request, a
proxy dynamically links and executes the appropriate
content provider's code to generate the personalized
content. Note that this necessitates protocols between
servers and proxies to maintain consistency in the
components being reused as well as the application code
for generating the content. These issues are addressed by
various features of the DynCoDe architecture. We now
discuss the detailed design of DynCoDe with reference to
the 3 major entities in the architecture: clients, servers and
proxies.

2.1 Client Architecture

Since DynCoDe is designed to be transparent to clients, no
changes are required of clients to benefit from the
DynCoDe architecture. This makes the deployment of
DynCoDe faster and more manageable.

2.2 DynCoDe Proxy Architecture

We denote the active proxies mentioned earlier as
DynCoDe proxies. We assume that the DynCoDe proxy is
able to receive and serve user requests prior to them
reaching the server by using redirection mechanisms. The
multi-threaded server process (see Fig. 1) in the DynCoDe
proxy is responsible for serving user requests. In addition,
the DynCoDe proxy also coordinates with the server in
order to update and verify content generating application
code as well as the reusable content components. The
various modules in the DynCoDe proxy are described
below and depicted in Figure 1.
Cache Manager Module: This module implements the
cache consistency and replacement mechanisms. The proxy
has a disk cache where reusable content components are
stored as well as a cache in program memory to store the
most recently accessed items from the disk cache. The
memory cache is useful since I/O from disk is much slower
than memory [3]. DynCoDe uses strong consistency
semantics keeping in view the kinds of applications that
could potentially use this service. For example,
personalized sites like Yahoo, CNN and MSN serve
continuously changing news in addition to relatively static
content like comics. When a new story breaks, they would
like it to reach the end user as soon as possible. Upon
detecting a change in content, the server sends invalidation
messages to all proxies that have recently accessed and
cached the content. The cache manager in the proxies
invalidates this content from the disk and memory cache
preventing staleness. When an object in the cache is to be
replaced, it calculates the rank of each of the objects

presently residing in the cache using the following formula
and replaces the objects with the smaller ranks.

Rank = Ff * Rr * Ss

F = frequency of access, f = positive value, R = Recency of
access, r = negative value, S = Size, s = positive to favor
bigger objects, negative to favor smaller objects
Content Module: The content module on the DynCoDe
proxy consists of 2 application codes, an ad generator and a
page assembler, both pushed by the server onto the proxy.

Figure 2: DynCoDe Proxy Architecture

The page assembler module (depicted in Figure 2)
assembles a personalized web page for the client from the
content and ad fragments. The content module take as input
the user profiles and produces as output the user specific
web page that is sent back to the client. The content module
interacts with the fetching daemon and cache manager
module to retrieve and store both content and user profiles
and is implemented as dynamic libraries in C that are
linked and invoked on a client request. The content module
is served by various daemons: (1)The invalidation daemon
listens for invalidation requests from the server and on
receiving these invalidates the content both in the memory
cache and on the disk, (2) The code push daemon listens
for code push requests in order to retrieve the
corresponding content generating application code and
store it in the proxy replacing the older code and (3) The
fetching daemon fetches the user profiles and content from
the server when required based on the requests generated
by the server code executing on the proxy.

Figure 2: Content composition

Cache Organization: The DynCoDe proxy maintains a
separate directory structure for each of the content
providers it serves. An example directory structure for the
portal MyYahoo is shown in Figure 3. The portal directory
has two sub directories, one to store the content

 2

components and one to store the code that would be
executed to generate the user specific web page from the
components. The same directory structure is also replicated
on the server and maintained with strong consistency. Note
that if the proxy serves multiple content providers each
would have its own independent tree in the cache. Each
DynCoDe proxy maintains two persistent connections with
each content provider being served, one for fetching user
profiles and content from the server and the other persistent
connection to send invalidations and code from the server
to proxy.
Log Module: This module keeps track of requests served
by the cache for each of the content files as well as other
statistics and periodically relays these to the server.

Figure 3: Disk Cache Structure

2.3 Server Architecture

The DynCoDe server is implemented as a concurrent multi-
threaded server. It consists of many modules described
below. The server actively pushes code to the DynCoDe
proxies and typically only serves content to proxies that
have not cached the content.
Content Consistency Module: This module keeps track,
on a per proxy basis, all the content that it has sent to the
proxies. When the content changes it goes through its data
structures to see which proxies have the modified files
cached on them and sends them a INVALIDATE request
for that file. This maintains content consistency.
Code Push Module: When the content generating
application code used to build personalized pages changes,
the server pushes this new modified code to all the proxies
that are serving it. For example, code changes may occur
due to a change in content design or a new algorithm for
displaying advertisements.
Cache Manager Module: The server optimizes
performance and reduces disk I/O by maintaining data and
profile caches shared across connections. The probability
of collision in use of the cache is reduced by record level
caching both in the profile and data cache.
Authentication Module: This module accepts and
authenticates connections from DynCoDe proxies.

2.4 Operational Protocol

The DynCoDe proxies are configured with the hostnames
of the content providers that they have to provide service
for. The proxy establishes persistent TCP connections for
each such newly added content provider server. It then

Figure 4: Operational Protocol

creates the appropriate directory structure for that content
provider and downloads the application code, which is in
the form of dynamic libraries, over the persistent
connection from the content provider. The server uses one
of the persistent connections to send invalidations and code
to the proxy and the proxy uses the other persistent
connection to fetch content from the server. Once the proxy
downloads and links the application code, it is ready to
accept client requests for that particular content provider.

The operational protocol is depicted in Figure 4. An initial
client request to the server would contain the user name
and pass word (e.g, using cookies) in order to authenticate
the request and also be able to generate content specific to
that particular user. Client requests are intercepted by the
proxy which checks to see if it has already linked the
application code of that particular content provider and if
not, links it and invokes the function buildPage (part of the
page assembler). The buildPage function in the
dynamically linked library takes the authentication or
identification information of the user as input. It then
checks the cache (using the API provided by the Cache
Manager) to see if the user profile has been cached either in
the physical memory or on disk. If not then it fetches the
user profile (using the Fetch daemon). The retrieved user
profile is then passed to the content modules, which
determine what ads and content are appropriate for the
user. Both the physical memory and the disk are checked to
see if they have a copy of the ads and the content and if
not, it is fetched over the persistent connection with the
web server. Subsequently, the Page Assembler, which now
has all the appropriate ads and content for that particular
user, constructs the dynamic page as per the layout
preferences of the user and sends the customized page to
the client browser. To maintain consistency, the server
keeps track of the files cached by a particular proxy and
sends invalidations to the nodes which have those cached.
Invalidations are detected as resource changes and written
to a global invalidation file. The server then sends the
appropriate invalidation requests to the proxies over the

 3

persistent connections and the proxy receives these
messages and invalidates the content in the memory and
removes the file from the disk.

2.5 Other Design Issues

Many web caches propose hierarchical structures.
However, DynCoDe does not incorporate a caching
hierarchy due to problems associated with them related to
placement restrictions, queuing delays and redundancy of
data [4]. A DynCoDe proxy node is a node placed close to
the client and uses a distributed cache architecture [5]. We
have not incorporated an inter-cache protocol such as
CARP/ICP since it is likely that the DynCoDe node has a
high probability of hits once it has achieved the user
locality we want to provide. In this scenario, inducing more
traffic on the network using inter-cache protocols and the
associated protocol delay is unnecessary. For pricing,
content providers need to access statistics. Current web
caches hide client accesses to the content and hence
prevent the collection of these statistics by content
providers. Due to this, the providers are forced to mark
content un-cacheable, thus making ISP caches unusable. In
order to alleviate this problem, DynCoDe proxies support
for pushing access statistics to the server. The DynCoDe
proxy periodically sends back the logs that it stores and
hence the server gets all the information that it needs to
price its services and have incentive to make more of their
content cacheable using the DynCoDe architecture.

3. Performance Evaluation

The advantages of caching, whether static or dynamic
caching, are improved response time, bandwidth savings,
better availability and increased server scalability. To
measure the above parameters with respect to our
architecture under real network conditions, we set up a test
bed. The test bed consists of a content server running on a
node at University of Illinois, Chicago and the DynCoDe
proxy and the clients running in Pittsburgh at locations in
Carnegie Mellon University and a residential colony. To
simulate the clients we use Apache Bench, which produces
a steady stream of requests. Earlier studies have observed
that the number of items in a typical personalized page
were less than 1000. Each item was typically less than 1KB
and also each customized page was typically over 20KB.
We in our own measurements have noticed the typical
personalized MSN and MyYahoo pages have an average
size of about 100 KB mainly due to presence of images. So
we took measurements for file sizes ranging from 10KB to
100 KB and also for an invalidation rate of 1 minute for
each of the objects i.e. a new version of each object comes
out every 60s. The very high refresh rate exhibited by
content such as stock tickers was used to measure the
worst-case performance of the DynCoDe architecture,

because due to the high invalidation rate it now has to fetch
the records from the server much more often decreasing the
bandwidth savings and degrading the response rate.

3.1 User Response Time

As can be seen from Figure 5, the response time to the
clients is cut by at least half in the DynCoDe architecture.
This happens across different page sizes as well. This is
due to the fact that the proxies are placed at the access
networks closer to the clients than the server,
communicating with which would require going across the
WAN and the delay incurred thereof. The reduction by half
in the response time is impressive in view of the high
invalidation rate; each object is invalidated every minute. If
the invalidation rate were assumed to be more reasonable,
as in the real world, then less content would be required to
be fetched from the server thus improving the response
time even further.

Figure 5: Response Time

3.2 Bandwidth Savings

For calculating the bandwidth savings we assumed that the
DynCoDe proxy would be serving only a modest 10
requests for the personalized pages each second. We
plotted the bandwidth savings vs. the invalidation rate as
shown in Figure 6. Bandwidth savings are calculated as the
amount of traffic that is not sent over the WAN due to the
use of DynCoDe. Intuitively as the invalidation rate
decreases the bandwidth savings would increase, as most of
the content in the cache could be used in building the
customized pages and less content needs to be fetched from
the remote web server. Significantly even a high
invalidation rate of 1 minute for each of the objects in the
cache leads to 83% savings in bandwidth. A more realistic
assumption that content changes only every 5 minutes leads
to a 97% increase in bandwidth savings. These savings in
bandwidth would translate into monetary savings that
would otherwise have been invested in provisioning the
bandwidth between the clients and the web servers.

 4

Figure 6: Bandwidth Savings

3.3 Server Scalability

From our measurements we have seen that maintaining the
per-proxy state consumes very little CPU time compared to
actually processing the dynamic content requests for the
clients. Figure 7 shows that as the number of proxies
increases, the memory overhead on the Web Server to
maintain state for the proxies increases linearly. The
significant fact is that the amount of memory needed to
keep state for 100 DynCoDe nodes is only 60MB, which is
quite reasonable given the fact that these 100 DynCoDe
nodes could potentially increase the serving capacity of the
server 100 fold. This supports our assumption that server
side invalidations used in our architecture are feasible.

Figure 7: Memory Overhead

4. Related Work

Web caching and dynamic caching in particular has been a
hot topic for research in current times. But no single best
solution is yet widely accepted or standardized. In [6], a
scheme for publisher centric dynamic caching is
implemented. Such architectures are vital to support
general-purpose caches that span multiple administrative
domains wherein security is of primary importance.
DynCoDe implements personalized content caching and
distribution within a single content distribution network. In
[7], the authors describe the architecture of Active Cache, a
programmable cache, closely related to DynCoDe.
However, unlike DynCoDe, it does not propose server co-

ordination, has no support for invalidations and is
implemented in Java, which significantly degrades its
performance, compared to the DynCoDe architecture
implemented in C. Also in the DynCoDe architecture both
the server and the proxies co-operate and interact with each
other to provide many more benefits than the Active Cache
that has no interaction with the web server. The Server Side
Invalidations that we have used in our architecture have
also been applied to distributed file systems as in AFS.
DynCoDe incorporates page composition from fragments
similar to schemes such as that proposed in [9].

5. Conclusions

In this paper, we proposed and evaluated the DynCoDe
architecture to efficiently and transparently push the
generation and caching of personalized dynamic web
content to active proxies in the edge networks, closer to the
clients. The major benefits of DynCoDe include improved
bandwidth consumption, user response time, server
availability and scalability. The evaluation of the
architecture under real network conditions has indicated
that the user response time can be cut by half, bandwidth
savings under the worst-case conditions are greater then
80% and the server request serving capacity could be
improved by orders of magnitude. As part of future work
we would like to generalize the DynCoDe architecture to
other types of dynamic content like transactions and
database driven content on the web. The performance
results presented in this paper were based on reasonably
assumed and accepted web characteristics. We would also
like to use real server traces from content providers and
ISPs to further evaluate the performance of DynCoDe.

References
[1] T. M. Kroeger et al., “Exploring the bounds of Web latency
reduction from caching and pre-fetching”, In Proc. of USITS
1997
[2] C. E. Wills et al., “Studying the impact of more complete
server information on web caching”. In Proc. of WCW 2000
[3] Vivek S. Pai et al, “Locality-aware request distribution in
cluster-based network servers”, In Proc. of ASPLOS 1998
[4] P. Rodriguez et al, “Web caching architectures: hierarchical
and distributed caching”, In Proc. of WCW 1999.
[5] Z. Wang, “Cachemesh: a distributed cache system for the
World Wide Web”, In Proc. of WCW 1997
[6] Andy Meyers et al., “A Secure, Publisher-Centric Web
Caching Infrastructure”, In Proc. of INFOCOM 2001
[7] P. Cao, J. Zhang, and K. Beach, “Active cache: Caching
dynamic contents on the web”. In Proc. of Middleware 1998.
[8] B. Krishnamurthy et al, “On the use and performance of
content distribution networks”, In Proc. of IMW 2001
[9] J. Challenger et al, “A publishing system for efficiently
creating dynamic web content”. In Proc. of INFOCOM 2000

 5

	Introduction
	DynCoDe Architecture
	Client Architecture
	DynCoDe Proxy Architecture
	Server Architecture
	Operational Protocol
	Other Design Issues

	Performance Evaluation
	User Response Time
	Figure 5: Response Time

	Bandwidth Savings
	Figure 6: Bandwidth Savings

	Server Scalability
	Figure 7: Memory Overhead

	4. Related Work
	5. Conclusions

