Multiuser Adaptive MMSE Receiver using Multiple Antennas for Asynchronous W-CDMA Systems in Multipath Fading Channels

Aditya Trivedi D. K. Mehra
Electronics and Computer Engg. Department, Indian Institute of Technology, Roorkee, India
e-mail: adityat 67 @ rediffmail.com, dkmecfec @ iitr.ernet.in fax no.: + 91-1332-73560

ABSTRACT

The performance of multiuser adaptive minimum mean square error (MMSE) receiver combined with multiple antennas is investigated for wideband code division multiple access systems (W-CDMA) in multipath fading channels. In the adaptive implementation of the receiver, performance of various algorithms like least mean square (LMS), normalized least mean square (NLMS), recursive least square (RLS) and the newly proposed affine projection adaptive (APA) filtering algorithm is considered. With the use of spatial diversity (by having multiple antennas at the receiver) significant improvement can be achieved in the output signal-to-interference-and-noise ratio (SINR). The effect of fading correlation between antenna elements (which is a function of antenna spacing, angle of arrival, angle spread, and carrier frequency) on the performance is evaluated using simulation. Index terms: - CDMA systems, multiple access interference, multiuser detection, multipath fading, diversity.

I. INTRODUCTION

The capacity of wireless CDMA systems is limited by the interference generated by the transmission from other mobiles, known as multiple access interference (MAI) and by multipath fading, which also causes intersymbol interference (ISI) [1]. Multiuser detection has been shown to be a very promising method to increase the capacity of the CDMA systems. As an alternative to optimal but exponentially complex maximum-likelihood sequence detector, sub-optimum linear multiuser detectors (like MMSE receivers) have been explored. These time-domain signal processing techniques can be improved upon by using multiple receive antennas and antenna array processing [1], [2], which enhances the output SINR and offers diversity to mitigate the impairments caused by fading [3]. The application of adaptive space-time multiuser detection is considered in [1], [2] among others. In [1], no attention is paid to the effect of correlated fading and in [2], only synchronous CDMA system has been considered.

In this paper, we consider adaptive implementation of space-time multiuser detector based on MMSE criteria using APA filtering algorithm [4], whose convergence performance is found to be superior to NLMS algorithm, with much less computational complexity as compared to the RLS algorithm. The APA filtering algorithm has not been used elsewhere to the best of authors’ knowledge for the adaptive implementation of MMSE receivers in multipath fading channels. We also show that by adding antennas at the receiver, SINR gain can be increased. We highlight the additional diversity gain obtained if either angular spread is increased or independent fading is assumed across antenna elements.

In section II, we describe signal model. Description of architecture of space-time multiuser receiver is given in section III including APA filtering algorithm. Simulation results are presented in section IV. Conclusions are drawn in section V.

II. SIGNAL MODEL

A standard model for an asynchronous binary phase shift keyed (BPSK) direct-sequence CDMA (DS/CDMA) system is used in this paper [5]. In \(K \) user system, the \(k^{th} \) active users’ baseband transmission can be written as

\[
x_k(t) = \sum_i A_k b_k[i] s_k(t - i T - \nu_k)
\]

where \(b_k[i] \) is the symbol transmitted during \(i \)th interval \((i - 1)T \leq t \leq iT \). \(T \) is the symbol duration and \(b_k[i] \in \{-1, +1\} \). \(A_k \) and \(\nu_k \) represent the \(k^{th} \) user’s amplitude and delay respectively. \(\nu_k = (d_k + \delta_k)T \), where \(d_k \) is an integer between 0 and \(N-1 \) and \(\delta_k \) lies between \([0, 1)\). \(s_k(t) \) is the signature sequence associated
with the k^{th} user. We consider short code CDMA where same signature sequence is employed for each symbol interval.

$$s_k(t) = \sum_{j=0}^{N-1} a_k(j)\psi(t-jT_c)$$ \hspace{1cm} (2)$$

where T_c is the chip interval and the processing gain is N, where $N = TT_c$. $\psi(t)$ is the chip waveform and $a_k(j) \in \{ \pm \sqrt{1/N} \}$ is normalized so that $s_k(t)$ is having unit energy and duration T. Received signal corresponding to the k^{th} user at m^{th} antenna is given by

$$r_{km}(t) = \sum_{l=1}^{L_p} h_{k,j,m}(t) x_k(t - \tau_{k,l})$$ \hspace{1cm} (3)$$

where $h_{k,j,m}(t)$ is the channel coefficient corresponding to the k^{th} user’s l^{th} multipath for m^{th} antenna and $\tau_{k,l}$ is the path delay associated with the k^{th} user’s l^{th} multipath. L_p is total number of multipaths.

We have modified wide sense stationary uncorrelated scattering channel model [6], to include directional dependence to simulate the fading multipath channel. A highly frequency selective, tapped delay line channel model is considered, where multipaths arrive at T_c interval length following the arrival of the first path i.e. $\tau_{k,l} = \tau_{k,1} + (l-1)T_c$, where $l = 2, 3, \ldots, L_p$. This situation arises where the delay profile is more or less continuous. Correlated fading channel coefficients between receiving antenna elements are given as

$$h_{k,j,m} = h_{k,j} \exp \left(-j2\pi \frac{d}{\lambda} (m-1) \sin \theta_{k,j} \right)$$ \hspace{1cm} (4)$$

where $m = 1, 2, \ldots, M$. $h_{k,j}$ is the channel coefficient at the first antenna. $\theta_{k,j}$ is azimuthal angle of arrival of k^{th} user’s l^{th} path and d is antenna spacing. For independent fading, all channel coefficients corresponding to different antennas are generated independently, assuming that antenna elements are kept sufficiently apart.

The receiver is assumed to be synchronized with the main path which is the one to be the first path) of the k^{th} desired user i.e. $\tau_{k,1} + \nu_k = 0$ and the received signal is passed through a chip matched filter and sampled at the chip rate. We next define matrices \mathbf{P}_k^+ and \mathbf{P}_k.

$$\mathbf{P}_k = \begin{bmatrix} \mathbf{p}_{k,1}^+, \mathbf{p}_{k,2}^+, \ldots, \mathbf{p}_{k,l_l}^+ \end{bmatrix}$$ \hspace{1cm} (5)$$

where $\mathbf{p}_{k,l}$ and $\mathbf{p}_{k,i}$, $1 \leq k \leq K$ and $1 \leq l \leq L_p$, are the vectors of chip matched filter sampled outputs during i^{th} symbol duration corresponding to the inputs $s_k(t-iT-u_k - \tau_{k,l})$ and $s_k(t-(i-1)T-u_k - \tau_{k,l})$ respectively [5]. If we run one chip matched filter per user to track the first ray of each user then received signal vector at the m^{th} antenna corresponding to j^{th} users’ (chip matched filter) would be (during i^{th} symbol duration),

$$\mathbf{r}_{m,j}[i] = b_{j[i]} A_{j} \mathbf{P}_m^j \mathbf{h}_{m,j}[i] + \sum_{\ell = j}^{K} \sum_{\ell = 1}^{N} b_{\ell[i]} A_{\ell} \mathbf{P}_m^\ell \mathbf{h}_{m,\ell}[i] + \mathbf{n}_m[i]$$ \hspace{1cm} (6)$$

where $\mathbf{h}_{m,j}[i] = [h_{k,1,m}, h_{k,2,m}, \ldots, h_{k,J,m}]^T$ and superscript T denotes transpose. $\mathbf{n}_m[i]$ is the $N \times 1$ vector of zero-mean complex (circularly symmetric) Gaussian noise samples, having variance σ^2 at m^{th} antenna in the i^{th} symbol interval and i.i.d. across antenna elements. In all, we collect KN samples per antenna and for M antennas we aggregate KNM samples. Let $\mathbf{r}_m[i]$ be a KN length vector at the m^{th} antenna

$$\mathbf{r}_m[i] = [\mathbf{r}_{m,1}^T[i], \mathbf{r}_{m,2}^T[i], \ldots, \mathbf{r}_{m,K}^T[i]]^T$$ and $\mathbf{r}[i]$ be the overall data vector of length KNM obtained by stacking the M antenna outputs during i^{th} interval

$$\mathbf{r}[i] = [\mathbf{r}_1^T[i], \mathbf{r}_2^T[i], \ldots, \mathbf{r}_M^T[i]]^T$$ \hspace{1cm} (8)$$

III. ADAPTIVE SPACE–TIME MMSE MULTIUSER DETECTION

A. Architecture :

Space–time multiuser detection presented here is suitable for centralized (at the base station) processing. Receiver architecture for 2 users and single antenna case is shown in fig1. Received signals from other antennas are processed using similar structure and then added to the last summer for each user as shown. Sampled output at interval T denotes soft estimates \hat{b}. Let $w_{j,q,m}[n]$ be the n^{th} tap (filter coefficient) of j^{th} user’s chip matched filter output going to q^{th} users summer in the m^{th}
Fig. 1. Space-time multiuser detector.

antenna, where $1 \leq j, q \leq K$, $1 \leq m \leq M$, and $1 \leq n \leq N$. All w's are adapted according to MMSE criteria. The output $SINR$ of an MMSE detector depends on its ability to capture the received energy of the desired user while suppressing MAI and ISI. Choosing KMN samples, which are shared by all the users, based on MMSE criteria, the detector achieves the optimum tradeoff between RAKE matched filtering and interference mitigation and maximizes the output $SINR$ [1]. For obtaining synchronism between all detected data symbols of all users, we can delay the signal at the input to the k^{th} user's chip matched filter by $cT - T_{\nu k}$, where c is the smallest integer that results in positive delay.

Now we define KMN length filter coefficients for the k^{th} user in i^{th} symbol duration as

$$w_{k}[i]=\left[\begin{array}{c} w_{k1,i}^T[i], w_{k2,i}^T[i], \ldots, w_{kM,i}^T[i]\end{array}\right]$$ \hspace{1cm} (9)

Where KN length vector,

$$w_{k,m}[i]=\left[\begin{array}{c} w_{1k,m}[i], w_{2k,m}[i], \ldots, w_{Kk,m}[i]\end{array}\right]^T$$

and N length vector,

$$w_{j,q,m}[i]=\left[\begin{array}{c} w_{j1,q}[i], w_{j2,q}[i], \ldots, w_{jN,q}[i]\end{array}\right]^T$$

We choose $w_{k}[i]$ to minimize the mean-square-error (MSE) between the i^{th} data symbol and its soft estimate

$$MSE_k = E\left[b_k[i] - \hat{b}_k[i] \right]^2$$

$$= 1 + w_k^H \Gamma w_k - w_k^H v_k - v_k^H w_k$$ \hspace{1cm} (10)

where we have defined auto-correlation matrix of data vector Γ and cross correlation vector v_k as

$$\Gamma = E\left[r[i] r^H[i]\right], \text{ and } v_k = E\left[r[i] b_i\right]$$ \hspace{1cm} (11)

E, H, and $*$ are expectation, Hermitian transpose and complex conjugate operations respectively. Minimum MSE is achieved by solving Wiener-Hopf equation [4]. i.e.

$$w_k = \Gamma^{-1} v_k$$ \hspace{1cm} (12)

Grouping the coefficient vector for the K users, we have the MMSE multiuser coefficient matrix

$$W = \left[\begin{array}{c} w_1, w_2, \ldots, w_K \end{array}\right] = \Gamma^{-1} V$$ \hspace{1cm} (13)

where multiuser cross-correlation matrix V of dimension $KMN \times K$ is given as

$$V = \left[\begin{array}{c} v_1, v_2, \ldots, v_K \end{array}\right]$$

$SINR$ can be expressed in terms of MSE as

$$SINR = \frac{\sigma_i^2 - MSE}{\text{MSE}}$$ \hspace{1cm} (14)

where σ_i^2 is the variance of input symbols.

B. Multiuser APA algorithm:

In the adaptive implementation, filter coefficient can be computed iteratively by transmitting training symbols. APA filtering can be viewed as multiple constraints optimization criterion with number of constraints, L, is called as the order of the APA filter. We may view the APA filter as
TABLE I. COMPUTATIONAL COMPLEXITY FOR VARIOUS ADAPTIVE ALGORITHMS

<table>
<thead>
<tr>
<th>Computational complexity</th>
<th>Complex Addition / Subtraction</th>
<th>Complex Multiplication / Division</th>
</tr>
</thead>
<tbody>
<tr>
<td>LMS</td>
<td>$2N_T$</td>
<td>$2N_T + 1$</td>
</tr>
<tr>
<td>NLMS</td>
<td>$3N_T$</td>
<td>$3N_T + 1$</td>
</tr>
<tr>
<td>Regularized APA Algorithm</td>
<td>$N_T(L^2 + 2L + 1) + L^2$</td>
<td>$N_T(L^2 + 2L + 1) + 2L + 1$</td>
</tr>
<tr>
<td>RLS</td>
<td>$3N_T^2 + 3N_T + 1$</td>
<td>$3N_T^2 + 4N_T + 1$</td>
</tr>
</tbody>
</table>

an intermediate adaptive filter between the NLMS filter and RLS filter in terms of both computational complexity and performance. If $L=1$ then APA filter reduces to NLMS filter and if $L=KNM$, APA algorithm reduces to RLS algorithm. In APA filter, cost function for update weight vector for kth user is given as [4],

$$
\sum_{j=1}^{L} \text{Re}\left[\lambda_j [b_k[i-j] - \hat{w}_i[i+1]r[i-j]] \right]$

(15)

where λ_j are the Lagrange multipliers pertaining to multiple constraints. Solving the above problem, we get the following APA algorithm [4],

$$
A^H[i] = [r[i], r[i-1], \ldots, r[i-L+1]] \quad \text{B} [i] = [b[i], b[i-1], \ldots, b[i-L+1]]^T \quad \text{E} [i] = \text{B} [i] - \text{A} [i] \text{W} [i] \\
\text{W} [i+1] = \text{W} [i] + \mu A^H[i] (A[i]A^H[i]+\delta I)^{-1}\text{E}[i]
$$

(16)

where $\text{b}[i] = \text{W}^H[i]r[i]$, $\text{b}[i] = \text{sgn}(\text{real}(\text{b}[i]))$. During training $\text{b}[i] = \text{b}[i]$, where $\text{b}[i] = [b_1[i], b_2[i], \ldots, b_k[i]]^T$. μ is step size which controls the adaptation rate. δ is small positive constant used for regularization and I is identity matrix of order L.

Simulation results obtained are in agreement with [3]. In fig.4 we show that by having uncorrelated fading at the antenna elements additional diversity gain of roughly 2 dB can be achieved for four antennas case. In correlated fading with antenna spacing of half wavelength and angular spread of 5 degrees, correlation in excess of 0.98 is observed between adjacent antenna elements and around 0.8 between first and fourth antenna. Through simulation, we have also obtained improvement of 0.5 dB if angular spread is increased from 5 degrees to 15 degrees.
V CONCLUSIONS

In this paper performance of adaptive MMSE multiuser detector, combined with multiple antennas for the detection of asynchronous WCDMA signals in multipath Rayleigh fading channel is obtained in terms of residual MSE. With the use of APA filtering algorithm, significant improvement can be obtained over NLMS adaptive algorithm in convergence characteristics. We have also demonstrated that using multiple antennas at the receiver, enhances the performance of the temporal processing (multiuser detection) even if the correlation between antenna elements is high. Roughly 3 dB advantage is obtained by doubling the antenna elements. We have also highlighted that additional diversity gain can be achieved if the antennas are placed widely apart, so that independent fading occurs at each antenna element.

REFERENCES